Operator and dual operator bases in linear topological spaces
Author:
William B. Johnson
Journal:
Trans. Amer. Math. Soc. 166 (1972), 387400
MSC:
Primary 46A15
MathSciNet review:
0296643
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A net of continuous linear projections of finite range on a Hausdorff linear topological space V is said to be a Schauder operator basisS.O.B. (resp. Schauder dual operator basisS.D.O.B.) provided it is pointwise bounded and converges pointwise to the identity operator on V, and (resp. ) whenever . S.O.B.'s and S.D.O.B.'s are natural generalizations of finite dimensional Schauder bases of subspaces. In fact, a sequence of operators is both a S.O.B. and S.D.O.B. iff it is the sequence of partial sum operators associated with a finite dimensional Schauder basis of subspaces. We show that many dualitytheory results concerning Schauder bases can be extended to S.O.B.'s or S.D.O.B.'s. In particular, a space with a S.D.O.B. is semireflexive if and only if the S.D.O.B. is shrinking and boundedly complete. Several results on S.O.B.'s and S.D.O.B.'s were previously unknown even in the case of Schauder bases. For example, Corollary IV.2 implies that the strong dual of an evaluable space which admits a shrinking Schauder basis is a complete barrelled space.
 [1]
Maynard
G. Arsove, The PaleyWiener theorem in metric linear spaces,
Pacific J. Math. 10 (1960), 365–379. MR 0125429
(23 #A2731)
 [2]
Cz.
Bessaga and A.
Pełczyński, Properties of bases in spaces of type
𝐵₀, Prace Mat. 3 (1959), 123–142
(Polish, with Russian and English summaries). MR 0126691
(23 #A3986)
 [3]
Jean
Dieudonné, On biorthogonal systems, Michigan Math. J.
2 (1954), 7–20. MR 0062946
(16,47c)
 [4]
Ed
Dubinsky and J.
R. Retherford, Schauder bases and Köthe sequence
spaces, Trans. Amer. Math. Soc. 130 (1968), 265–280. MR 0232184
(38 #510), http://dx.doi.org/10.1090/S00029947196802321849
 [5]
James
A. Dyer, Integral bases in linear topological spaces, Illinois
J. Math. 14 (1970), 468–477. MR 0261308
(41 #5923)
 [6]
M.
M. Grinblyum, On the representation of a space of type 𝐵 in
the form of a direct sum of subspaces, Doklady Akad. Nauk SSSR (N.S.)
70 (1950), 749–752 (Russian). MR 0033977
(11,525c)
 [7]
Robert
C. James, Bases and reflexivity of Banach spaces, Ann. of
Math. (2) 52 (1950), 518–527. MR 0039915
(12,616b)
 [8]
Oscar
T. Jones, Continuity of seminorms and linear mappings on a space
with Schauder basis, Studia Math. 34 (1970),
121–126. MR 0259544
(41 #4182)
 [9]
J.
L. Kelley and Isaac
Namioka, Linear topological spaces, With the collaboration of
W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G.
Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University
Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.,
1963. MR
0166578 (29 #3851)
 [10]
Charles
W. McArthur, The weak basis theorem, Colloq. Math.
17 (1967), 71–76. MR 0216268
(35 #7103)
 [11]
J.
R. Retherford, Bases, basic sequences and reflexivity of linear
topological spaces, Math. Ann. 164 (1966),
280–285. MR 0198192
(33 #6351)
 [12]
William
H. Ruckle, The infinite sum of closed subspaces of an
𝐹space, Duke Math. J. 31 (1964),
543–554. MR 0166589
(29 #3862)
 [13]
I.
Singer, Basic sequences and reflexivity of Banach spaces,
Studia Math. 21 (1961/1962), 351–369. MR 0146635
(26 #4155)
 [1]
 M. G. Arsove, The PayleyWiener theorem in metric linear spaces, Pacific J. Math. 10 (1960), 365379. MR 23 #A2731. MR 0125429 (23:A2731)
 [2]
 C. Bessaga and A. Pełczyński, Properties of bases in spaces of type , Prace Mat. 3 (1959), 123142. (Polish) MR 23 #A3986. MR 0126691 (23:A3986)
 [3]
 J. Dieudonné, On biorthogonal systems, Michigan Math. J. 2 (1954), 720. MR 16, 47. MR 0062946 (16:47c)
 [4]
 E. Dubinsky and J. R. Retherford, Schauder bases and Köthe sequence spaces, Trans. Amer. Math. Soc. 130 (1968), 265280. MR 38 #510. MR 0232184 (38:510)
 [5]
 J. A. Dyer, Integral bases in linear topological spaces, Illinois J. Math. 14 (1970), 468477. MR 41 #5923. MR 0261308 (41:5923)
 [6]
 M. M. Grinblyum, On the representation of a space of type B in the form of a direct sum of subspaces, Dokl. Akad. Nauk SSSR 70 (1950), 749752. (Russian) MR 11, 525. MR 0033977 (11:525c)
 [7]
 R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518527. MR 12, 616. MR 0039915 (12:616b)
 [8]
 O. T. Jones, Continuity of seminorms and linear mappings on a space with Schauder basis, Studia Math. 34 (1970), 121126. MR 41 #4182. MR 0259544 (41:4182)
 [9]
 J. L. Kelley and I. Namioka, Linear topological spaces, The University Series in Higher Math., Van Nostrand, Princeton, N. J., 1963. MR 29 #3851. MR 0166578 (29:3851)
 [10]
 C. W. McArthur, The weak basis theorem, Colloq. Math. 17 (1967), 7176. MR 35 #7103. MR 0216268 (35:7103)
 [11]
 J. R. Retherford, Bases, basic sequences and reflexivity of linear topological spaces, Math. Ann. 164 (1966), 280285. MR 33 #6351. MR 0198192 (33:6351)
 [12]
 W. H. Ruckle, The infinite sum of closed subspaces of an Fspace, Duke Math. J. 31 (1964), 543554. MR 29 #3862. MR 0166589 (29:3862)
 [13]
 I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961/62), 351369. MR 26 #4155. MR 0146635 (26:4155)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
46A15
Retrieve articles in all journals
with MSC:
46A15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197202966436
PII:
S 00029947(1972)02966436
Keywords:
Schauder basis,
continuous linear projections,
duality
Article copyright:
© Copyright 1972 American Mathematical Society
