A new characterization of the set of a rational function
Authors:
Marilyn K. Oba and Tom S. Pitcher
Journal:
Trans. Amer. Math. Soc. 166 (1972), 297308
MSC:
Primary 30A20; Secondary 60B99
MathSciNet review:
0297978
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In the early part of this century G. Julia and P. Fatou extensively studied the iteration of functions on the complex plane. More recently Hans Brolin reopened the investigation. In this paper, we are interested in the F set which is the set of points at which the family of iterates of a given rational function R is not normal and in a measure which is in some sense naturally imposed on the F set by the iterates of R. We construct a sequence of probability measures via the inverse functions of the iterates of R and almost any starting point. The measure of primary interest is the weak limit of such sequences. These weak limits are supported by F and have certain invariance properties. We establish that this weak limit measure is unique and is ergodic with respect to the transformation R on the F set for a large class of rational functions. In the course of the proof of uniqueness we develop expressions for the logarithmic potential function and for the energy integral of F. We also establish inequalities for the capacity of the F set which become equalities for the polynomial case.
 [1]
Hans
Brolin, Invariant sets under iteration of rational functions,
Ark. Mat. 6 (1965), 103–144 (1965). MR 0194595
(33 #2805)
 [2]
P.
Fatou, Sur les équations fonctionnelles, Bull. Soc.
Math. France 47 (1919), 161–271 (French). MR
1504787
 [3]
Einar
Hille, Analytic function theory. Vol. II, Introductions to
Higher Mathematics, Ginn and Co., Boston, Mass.New YorkToronto, Ont.,
1962. MR
0201608 (34 #1490)
 [4]
G. Julia, Memoire sur l'itération des fonctions rationnelles, J. Math. Pures Appl. (8) 1 (1918), 47245.
 [1]
 Hans Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103144. MR 33 #2805. MR 0194595 (33:2805)
 [2]
 P. Fatou. Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161271. MR 1504787
 [3]
 Einar Hille, Analytic function theory, Vol. 2, Introductions to Higher Math., Ginn, Boston, Mass., 1962. MR 34 #1490. MR 0201608 (34:1490)
 [4]
 G. Julia, Memoire sur l'itération des fonctions rationnelles, J. Math. Pures Appl. (8) 1 (1918), 47245.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
30A20,
60B99
Retrieve articles in all journals
with MSC:
30A20,
60B99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197202979783
PII:
S 00029947(1972)02979783
Keywords:
Iteration of rational functions,
F set,
weak limit measure,
ergodicity,
logarithmic capacity
Article copyright:
© Copyright 1972
American Mathematical Society
