On inverse scattering for the KleinGordon equation
Author:
Tomas P. Schonbek
Journal:
Trans. Amer. Math. Soc. 166 (1972), 101123
MSC:
Primary 47F05; Secondary 35L05
MathSciNet review:
0298476
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A scattering operator is set up for the KleinGordon equation perturbed by a linear potential to . It is found that for each there exists a constant (of order as , n = space dimension) such that if the and the norm of V and are bounded by is either nonnegative or nonpositive, and is of compact support having diameter , then or . Here , and may also depend on q.
 [1]
Lipman
Bers, Fritz
John, and Martin
Schechter, Partial differential equations, American
Mathematical Society, Providence, R.I., 1979. With supplements by Lars
Gȧrding and A. N. Milgram; With a preface by A. S. Householder;
Reprint of the 1964 original; Lectures in Applied Mathematics, 3A. MR 598466
(82c:35001)
 [2]
John
M. Chadam, The asymptotic behavior of the KleinGordon equation
with external potential, J. Math. Anal. Appl. 31
(1970), 334–348. MR 0262882
(41 #7487)
 [3]
Antonio
Degasperis, On the inverse problem for the KleinGordon
𝑠wave equation, J. Mathematical Phys. 11
(1970), 551–567. MR 0256668
(41 #1324)
 [4]
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions. Vol. 2, McGrawHill, New York, 1953. MR 15, 419.
 [5]
Tosio
Kato, Perturbation theory for linear operators, Die
Grundlehren der mathematischen Wissenschaften, Band 132, SpringerVerlag
New York, Inc., New York, 1966. MR 0203473
(34 #3324)
 [6]
Peter
D. Lax and Ralph
S. Phillips, Scattering theory, Pure and Applied Mathematics,
Vol. 26, Academic Press, New YorkLondon, 1967. MR 0217440
(36 #530)
 [7]
Stuart
Nelson, On some solutions to the KleinGordon
equation related to an integral of Sonine, Trans. Amer. Math. Soc. 154 (1971), 227–237. MR 0415049
(54 #3140), http://dx.doi.org/10.1090/S00029947197104150499
 [8]
Roger
G. Newton, Scattering theory of waves and particles,
McGrawHill Book Co., New YorkToronto, Ont.London, 1966. MR 0221823
(36 #4875)
 [9]
E.
T. Whittaker and G.
N. Watson, A course of modern analysis, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1996. An introduction to
the general theory of infinite processes and of analytic functions; with an
account of the principal transcendental functions; Reprint of the fourth
(1927) edition. MR 1424469
(97k:01072)
 [1]
 L. Bers, F. John and M. Schechter, Partial differential equations, Lectures in Appl. Math., vol. 3, Interscience, New York, 1964. MR 29 #346. MR 598466 (82c:35001)
 [2]
 J. M. Chadam, The asymptotic behavior of the KleinGordon equation with external potential, J. Math. Anal. Appl. 31 (1970), 334348. MR 41 #7487. MR 0262882 (41:7487)
 [3]
 A. Degasperis, On the inverse problem for the KleinGordon swave equation, J. Mathematical Phys. 11 (1970), 551567. MR 41 #1324. MR 0256668 (41:1324)
 [4]
 A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions. Vol. 2, McGrawHill, New York, 1953. MR 15, 419.
 [5]
 T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, SpringerVerlag, New York, 1966. MR 34 #3324. MR 0203473 (34:3324)
 [6]
 P. D. Lax and R. S. Phillips, Scattering theory, Pure and Appl. Math., vol. 26, Academic Press, New York, 1967. MR 36 #530. MR 0217440 (36:530)
 [7]
 S. Nelson, On some solutions to the KleinGordon equation related to an integral of Sonine, Trans. Amer. Math. Soc. 154 (1971), 227237. MR 0415049 (54:3140)
 [8]
 R. Newton, Scattering theory of waves and particles, McGrawHill, New York, 1966. MR 36 #4875. MR 0221823 (36:4875)
 [9]
 E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge Univ. Press, New York, 1962. MR 31 #2375. MR 1424469 (97k:01072)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
47F05,
35L05
Retrieve articles in all journals
with MSC:
47F05,
35L05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197202984763
PII:
S 00029947(1972)02984763
Article copyright:
© Copyright 1972
American Mathematical Society
