A continuity theorem for Fuchsian groups
Author:
C. K. Wong
Journal:
Trans. Amer. Math. Soc. 166 (1972), 225239
MSC:
Primary 30A58
MathSciNet review:
0301192
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: On a given Riemann surface, fix a discrete (finite or infinite) sequence of points and associate to each an ``integer'' (which may be . This sequence of points and ``integers'' is called a ``signature'' on the Riemann surface. With only a few exceptions, a Riemann surface with signature can always be represented by a Fuchsian group. We investigate here the dependence of the group on the number . More precisely, keeping the points fixed, we vary the numbers in such a way that the signature tends to a limit signature. We shall prove that the corresponding representing Fuchsian group converges to the Fuchsian group which corresponds to the limit signature.
 [1]
Lars
V. Ahlfors and Leo
Sario, Riemann surfaces, Princeton Mathematical Series, No.
26, Princeton University Press, Princeton, N.J., 1960. MR 0114911
(22 #5729)
 [2]
L. Bers, Pseudoanalytic functions, Notes, New York University, New York, 1949.
 [3]
Lipman
Bers, Fritz
John, and Martin
Schechter, Partial differential equations, American
Mathematical Society, Providence, R.I., 1979. With supplements by Lars
Gȧrding and A. N. Milgram; With a preface by A. S. Householder;
Reprint of the 1964 original; Lectures in Applied Mathematics, 3A. MR 598466
(82c:35001)
 [4]
L. Bers, Riemann surfaces, Notes, New York University, New York, 1958.
 [5]
Lipman
Bers, Uniformization by Beltrami equations, Comm. Pure Appl.
Math. 14 (1961), 215–228. MR 0132175
(24 #A2022)
 [6]
R. Courant and D. Hilbert, Methods of mathematical physics. II: Partial differential equations, Interscience, New York, 1962. MR 25 #4216.
 [7]
L. Ford, Automorphic functions, 2nd ed., Chelsea, New York, 1951.
 [8]
Maurice
Heins, On Fuchsoid groups that contain parabolic
transformations, Contributions to function theory (Internat. Colloq.
Function Theory, Bombay, 1960) Tata Institute of Fundamental Research,
Bombay, 1960, pp. 203–210. MR 0151613
(27 #1597)
 [9]
O. Kellogg, Foundations of potential theory, Ungar, New York, 1929.
 [10]
P. Koebe, Ueber die Uniformisierung beliebiger analytischer Kurven, Gött. Nachr. (1907), 191210.
 [11]
Joseph
Lehner, Discontinuous groups and automorphic functions,
Mathematical Surveys, No. VIII, American Mathematical Society, Providence,
R.I., 1964. MR
0164033 (29 #1332)
 [1]
 L. Ahlfors and L. Sario, Riemann surfaces, Princeton Math. Series, no. 26, Princeton Univ. Press, Princeton, N. J., 1960. MR 22 #5729. MR 0114911 (22:5729)
 [2]
 L. Bers, Pseudoanalytic functions, Notes, New York University, New York, 1949.
 [3]
 L. Bers, F. John and M. Schechter, Partial differential equations, Proc. Summer Seminar (Boulder, Colorado, 1957), Lectures in Appl. Math., vol. 3, Interscience, New York, 1964. MR 29 #346. MR 598466 (82c:35001)
 [4]
 L. Bers, Riemann surfaces, Notes, New York University, New York, 1958.
 [5]
 , Uniformization by Beltrami equations, Comm. Pure Appl. Math. 14 (1961), 215228. MR 24 #A2022. MR 0132175 (24:A2022)
 [6]
 R. Courant and D. Hilbert, Methods of mathematical physics. II: Partial differential equations, Interscience, New York, 1962. MR 25 #4216.
 [7]
 L. Ford, Automorphic functions, 2nd ed., Chelsea, New York, 1951.
 [8]
 M. Heins, On Fuchsoid groups that contain parabolic transformations, Contribution to Function Theory, Internat. Colloq. Function Theory (Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, pp. 203210. MR 27 #1597. MR 0151613 (27:1597)
 [9]
 O. Kellogg, Foundations of potential theory, Ungar, New York, 1929.
 [10]
 P. Koebe, Ueber die Uniformisierung beliebiger analytischer Kurven, Gött. Nachr. (1907), 191210.
 [11]
 J. Lehner, Discontinuous groups and automorphic functions, Math. Surveys, no. 8, Amer. Math. Soc., Providence, R.I., 1964. MR 29 #1332. MR 0164033 (29:1332)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
30A58
Retrieve articles in all journals
with MSC:
30A58
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197203011922
PII:
S 00029947(1972)03011922
Keywords:
Riemann surfaces with signature,
the limit circle theorem of Koebe,
Fuchsian groups,
Poincaré metrics
Article copyright:
© Copyright 1972
American Mathematical Society
