Geodesic flow in certain manifolds without conjugate points

Author:
Patrick Eberlein

Journal:
Trans. Amer. Math. Soc. **167** (1972), 151-170

MSC:
Primary 58E10; Secondary 53C20

MathSciNet review:
0295387

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A complete simply connected Riemannian manifold *H* without conjugate points satisfies the uniform Visibility axiom if the angle subtended at a point *p* by any geodesic of *H* tends uniformly to zero as the distance from *p* to tends uniformly to infinity. A complete manifold *M* is a uniform Visibility manifold if it has no conjugate points and if the simply connected covering *H* satisfies the uniform Visibility axiom. We derive criteria for the existence of uniform Visibility manifolds. Let *M* be a uniform Visibility manifold, *SM* the unit tangent bundle of *M* and the geodesic flow on *SM*. We prove that if every point of *SM* is nonwandering with respect to then is topologically transitive on *SM*. We also prove that if is a normal covering of *M* then is topologically transitive on if is topologically transitive on *SM*.

**[1]**D. V. Anosov,*Geodesic flows on closed Riemann manifolds with negative curvature.*, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. MR**0242194****[2]**N. P. Bhatia and G. P. Szegő,*Dynamical systems: Stability theory and applications*, Lecture Notes in Mathematics, No. 35, Springer-Verlag, Berlin-New York, 1967. MR**0219843****[3]**P. Eberlein and B. O'Neill,*Visibility manifolds*(to appear).**[4]**L. W. Green,*Geodesic instability*, Proc. Amer. Math. Soc.**7**(1956), 438–448. MR**0079804**, 10.1090/S0002-9939-1956-0079804-7**[5]**L. W. Green,*Surfaces without conjugate points*, Trans. Amer. Math. Soc.**76**(1954), 529–546. MR**0063097**, 10.1090/S0002-9947-1954-0063097-3**[6]**L. W. Green,*A theorem of E. Hopf*, Michigan Math. J.**5**(1958), 31–34. MR**0097833****[7]**Marston Morse and Gustav A. Hedlund,*Manifolds without conjugate points*, Trans. Amer. Math. Soc.**51**(1942), 362–386. MR**0006479**, 10.1090/S0002-9947-1942-0006479-X**[8]**W. Klingenberg,*Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ*, Invent. Math.**14**(1971), 63–82 (German). MR**0296975****[9]**Harold Marston Morse,*A fundamental class of geodesics on any closed surface of genus greater than one*, Trans. Amer. Math. Soc.**26**(1924), no. 1, 25–60. MR**1501263**, 10.1090/S0002-9947-1924-1501263-9**[10]**-,*Instability and transitivity*, J. Math. Pures Appl. (9)**14**(1935), 49-71.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58E10,
53C20

Retrieve articles in all journals with MSC: 58E10, 53C20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1972-0295387-4

Keywords:
Geodesic flow,
conjugate points,
nonwandering points,
topological transitivity,
uniform Visibility

Article copyright:
© Copyright 1972
American Mathematical Society