Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations

Authors:
C. V. Coffman and J. S. W. Wong

Journal:
Trans. Amer. Math. Soc. **167** (1972), 399-434

MSC:
Primary 34C10

MathSciNet review:
0296413

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper treats the ordinary differential equation , where is continuous in (*y, x*) for , and is non-negative; the equation is assumed to be either of sublinear or superlinear type. Criteria are given for the equation to be oscillatory, to be nonoscillatory, to possess oscillatory solutions or to possess nonoscillatory solutions. An attempt has been made to unify the methods of treatment of the sublinear and superlinear cases. These methods consist primarily of comparison with linear equations and the use of ``energy'' functions. An Appendix treats the questions of continuability and uniqueness of solutions of the equation considered in the main text.

**[1]**F. V. Atkinson,*On second-order non-linear oscillations*, Pacific J. Math.**5**(1955), 643–647. MR**0072316****[2]**Štefan Belohorec,*On some properties of the equation 𝑦′′(𝑥)+𝑓(𝑥)𝑦^{𝛼}(𝑥)=0, 0<𝛼<1*, Mat. Casopis Sloven. Akad. Vied**17**(1967), 10–19 (English, with Russian summary). MR**0214854****[3]**C. V. Coffman and J. S. W. Wong,*On a second order nonlinear oscillation problem*, Trans. Amer. Math. Soc.**147**(1970), 357–366. MR**0257473**, 10.1090/S0002-9947-1970-0257473-2**[4]**C. V. Coffman and J. S. W. Wong,*Second order nonlinear oscillations*, Bull. Amer. Math. Soc.**75**(1969), 1379–1382. MR**0247180**, 10.1090/S0002-9904-1969-12427-4**[5]**R. H. Fowler,*Further studies of Emden's and similar differential equations*, Quart. J. Math.**2**(1931), 259-288.**[6]**J. W. Heidel,*A nonoscillation theorem for a nonlinear second order differential equation*, Proc. Amer. Math. Soc.**22**(1969), 485–488. MR**0248396**, 10.1090/S0002-9939-1969-0248396-0**[7]**Miloš Jasný,*On the existence of an oscillating solution of the nonlinear differential equation of the second order 𝑦′′+𝑓(𝑥)𝑦²ⁿ⁻¹=0, 𝑓(𝑥)>0*, Časopis Pěst. Mat.**85**(1960), 78–83 (Russian, with Czech and English summaries). MR**0142840****[8]**I. T. Kiguradze,*On the conditions for oscillation of solutions of the differential equation 𝑢′′+𝑎(𝑡)\vert𝑢\vert𝑠𝑝𝑛𝑠𝑔𝑛𝑢=0*, Časopis Pěst. Mat.**87**(1962), 492–495 (Russian, with Czech and German summaries). MR**0181800****[9]**Jaroslav Kurzweil,*A note on oscillatory solution of equation 𝑦”+𝑓(𝑥)𝑦²ⁿ⁻¹=0*, Časopis Pěst. Mat.**85**(1960), 357–358 (Russian, with English and Czech summaries). MR**0126025****[10]**Jack W. Macki and James S. W. Wong,*Oscillation of solutions to second-order nonlinear differential equations*, Pacific J. Math.**24**(1968), 111–117. MR**0224908****[11]**Zeev Nehari,*On a class of nonlinear second-order differential equations*, Trans. Amer. Math. Soc.**95**(1960), 101–123. MR**0111898**, 10.1090/S0002-9947-1960-0111898-8**[12]**Zeev Nehari,*Characteristic values associated with a class of non-linear second-order differential equations*, Acta Math.**105**(1961), 141–175. MR**0123775****[13]**Zeev Nehari,*A nonlinear oscillation problem*, J. Differential Equations**5**(1969), 452–460. MR**0235203****[14]**James S. W. Wong,*Some properties of solutions of 𝑢′′(𝑡)+𝑎(𝑡)𝑓(𝑢)𝑔(𝑢′)=0. III*, SIAM J. Appl. Math.**14**(1966), 209–214. MR**0203167****[15]**James S. W. Wong,*On second order nonlinear oscillation*, Funkcial. Ekvac.**11**(1968), 207–234 (1969). MR**0245915****[A-1]**C. V. Coffman and D. F. Ullrich,*On the continuation of solutions of a certain non-linear differential equation*, Monatsh. Math.**71**(1967), 385–392. MR**0227494****[A-2]**Charles V. Coffman,*On the positive solutions of boundary-value problems for a class of nonlinear differential equations*, J. Differential Equations**3**(1967), 92–111. MR**0204755****[A-3]**Stuart P. Hastings,*Boundary value problems in one differential equation with a discontinuity*, J. Differential Equations**1**(1965), 346–369. MR**0180723****[A-4]**Philip Hartman,*Ordinary differential equations*, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR**0171038****[A-5]**J. W. Heidel,*Uniqueness, continuation, and nonoscillation for a second order nonlinear differential equation*, Pacific J. Math.**32**(1970), 715–721. MR**0259244****[A-6]**D. V. Izjumova and I. T. Kiguradze,*Some remarks on the solutions of the equation 𝑢ⁿ+𝑎(𝑡)𝑓(𝑢)=0*, Differencial′nye Uravnenija**4**(1968), 589–605 (Russian). MR**0227544****[A-7]**R. M. Moroney,*Note on a theorem of Nehari*, Proc. Amer. Math. Soc.**13**(1962), 407–410. MR**0148983**, 10.1090/S0002-9939-1962-0148983-8**[A-8]**Richard A. Moore and Zeev Nehari,*Nonoscillation theorems for a class of nonlinear differential equations*, Trans. Amer. Math. Soc.**93**(1959), 30–52. MR**0111897**, 10.1090/S0002-9947-1959-0111897-8**[A-9]**David F. Ullrich,*Boundary value problems for a class of nonlinear second-order differential equations*, J. Math. Anal. Appl.**28**(1969), 188–210. MR**0245897****[A-10]**D. Willett and J. S. W. Wong,*Some properties of the solutions of [𝑝(𝑡)𝑥′]′+𝑞(𝑡)𝑓(𝑥)=0*, J. Math. Anal. Appl.**23**(1968), 15–24. MR**0226117**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1972-0296413-9

Keywords:
Oscillation,
nonoscillation,
nonlinear

Article copyright:
© Copyright 1972
American Mathematical Society