MAPPINGS FROM 3-MANIFOLDS ONTO 3-MANIFOLDS(*)

BY

ALDEN WRIGHT

Abstract. Let \(f \) be a compact, boundary preserving mapping from the 3-manifold \(M^3 \) onto the 3-manifold \(N^3 \). Let \(\mathbb{Z}_p \) denote the integers mod a prime \(p \), or, if \(p = 0 \), the integers. (1) If each point inverse of \(f \) is connected and strongly 1-acyclic over \(\mathbb{Z}_p \), and if \(M^3 \) is orientable for \(p > 2 \), then all but a locally finite collection of point inverses of \(f \) are cellular. (2) If the image of the singular set of \(f \) is contained in a compact set each component of which is strongly acyclic over \(\mathbb{Z}_p \), and if \(M^3 \) is orientable for \(p \neq 2 \), then \(N^3 \) can be obtained from \(M^3 \) by cutting out of \(\text{Int} \ M^3 \) a compact 3-manifold with 2-sphere boundary, and replacing it by a \(\mathbb{Z}_p \)-homology 3-cell. (3) If the singular set of \(f \) is contained in a 0-dimensional set, then all but a locally finite collection of point inverses of \(f \) are cellular.

I. Introduction. We suppose throughout the introduction that \(f: M^3 \rightarrow N^3 \) is a compact, boundary preserving mapping from the 3-manifold \(M^3 \) onto the 3-manifold \(N^3 \) (where \(M^3 \) and \(N^3 \) may or may not have boundary). Let \(\mathbb{Z}_p \) denote the integers modulo a prime \(p \), or, if \(p = 0 \), the integers.

If \(f^{-1}(x) \) is connected and strongly 1-acyclic over \(\mathbb{Z}_p \) for all \(x \in N^3 \), and if \(M^3 \) is orientable for \(p > 2 \), then in Corollary 1 it is shown that all but a locally finite collection of point inverses are cellular. This implies that \(N^3 \) can be obtained from \(M^3 \) by cutting out of \(\text{Int} \ M^3 \) a locally finite collection of compact 2-manifolds, each bounded by a 2-sphere, and replacing them by a 3-cell (see Corollary 3). Thus, if \(M^3 \) is compact, \(N^3 \) is a factor in a connected sum decomposition of \(M^3 \).

Now suppose that the image of the singular set of \(f \) is contained in a compact set \(X \) each component of which is strongly acyclic over \(\mathbb{Z}_p \). If \(M^3 \) is orientable for \(p \neq 2 \), then \(N^3 \) can be obtained from \(M^3 \) by cutting out of \(M^3 \) a finite number of compact 3-manifolds, each bounded by a 2-sphere, and replacing each by a \(\mathbb{Z}_p \)-homology 3-cell. In particular, if \(X \) has a neighborhood which is an irreducible 3-manifold with boundary (or if \(N^3 \) is irreducible), then \(N^3 \) is a factor in a connected sum decomposition of \(M^3 \). This extends Theorem 1 of Lambert in [9]. In the special case where the image of the singular set is contained in a Cantor set,
we can say in addition that all but a finite number of point inverses are cellular. This was previously proved by the author using other techniques.

Lemma 5 restates one of Armentrout’s results on approximating cellular maps with homeomorphisms. Using this lemma, we combine the results of Theorems 1 and 3 in Theorem 5. Thus if M^3 is compact and orientable for $p
eq 2$, and if the image of the point inverses of f which are not connected and strongly 1-acyclic over \mathbb{Z}_p is contained in a compact set X each component of which is strongly acyclic over \mathbb{Z}_p, then N^3 can be obtained from M^3 by cutting out of $\text{Int } M^3$ a finite number of 3-manifolds each bounded by a 2-sphere, and replacing each by a \mathbb{Z}_p-homology 3-cell. Theorem 6 combines Theorems 1 and 4 in a similar fashion.

In Theorem 7, we extend a result of McMillan [13] to show that if the image of the singular set of f is contained in a (nonclosed) 0-dimensional set, then all but a locally finite collection of point inverses are cellular.

Let G be a nontrivial abelian group. A compact set $X \subset M$ is strongly k-acyclic over G if for each open set $U \subset M$ containing X, there is an open set V such that $X \subset V \subset U$ and such that the inclusion induced homomorphism $i_*: H_k(V; G) \to H_k(U; G)$ is zero. (If X is connected and strongly k-acyclic over G for $1 \leq k \leq n$, then $X \subset M$ has property $uv_k(G)$ in the sense of [8].) The compact set $X \subset M$ is strongly acyclic over G if it is connected and strongly k-acyclic over G for all $k \geq 1$.

We refer the reader to [13 (especially Lemma 1)] for further facts about strong acyclicity. In particular, for any positive integer k, a compact set X in the interior of a 3-manifold M^3 is strongly k-acyclic over G if and only if each component of X is strongly k-acyclic over G. Also X is strongly acyclic over Z if and only if X is connected and $H^*(X; Z) = 0$ (see [7]).

The compact set $X \subset M$ has property uv^∞ if for each open set $U \subset M$ containing X, there is an open set V such that $X \subset V \subset U$ and such that V is contractable in U. A set X in a 3-manifold M^3 is cellular in M^3 if $X = \bigcap_{i=1}^n F_i$ where each F_i is a 3-cell, and $F_{i+1} \subset \text{Int } F_i$ for all i.

If a is a loop in a space M, we will denote its homology class in $H_1(M; G)$ by $[a]$. The symbol \mathbb{Z}_p for $p > 0$ will denote the finite cyclic group of order p. The symbol \mathbb{Z}_0 will denote the integers.

A manifold will be assumed to be connected and to have no boundary unless otherwise specified. We assume that all manifolds have a piecewise-linear structure. A 3-manifold is irreducible if every polyhedral 2-sphere in it bounds a polyhedral 3-cell. If M^3 and N^3 are 3-manifolds, possibly with boundary, the connected sum $M^3 \# N^3$ of M^3 and N^3 is obtained by removing the interior of a 3-cell from the interior of each, and then sewing the two manifolds together along the resulting boundary components, using an orientation reversing homeomorphism if M^3 and N^3 are oriented.

A map or mapping is a continuous function. A monotone map is a map all of whose point inverses are connected. A map $f: M \to N$ is compact (proper) if, for any compact set K in N, $f^{-1}(K)$ is compact. If $f: M \to N$ is a compact monotone
map, then the point inverses of M form a monotone upper semicontinuous decomposition of M whose associated decomposition space is homeomorphic to N. Conversely, if G is a monotone upper semicontinuous decomposition of M, the projection map $p: M \to M/G$ is a compact monotone map.

Let $\{X_a\}_{a \in A}$ be a collection of compact subsets of a space M. Then $\{X_a\}_{a \in A}$ is a locally finite collection if for $y \in M$, y has a neighborhood U which intersects only a finite number of elements of the collection.

11. Maps all of whose point inverses are strongly acyclic.

Lemma 1. If X is a compact connected subset of a space M and if X is strongly k-acyclic over \mathbb{Z} in M for $1 \leq k \leq n$, then X is strongly k-acyclic over \mathbb{Z}_p in M for $1 \leq k \leq n$ and for any prime $p > 1$.

Proof. Let W and V be chosen so that $X \subseteq W \subseteq V \subseteq U$ and so that the inclusion induced homomorphisms $i_*: H_k(V; \mathbb{Z}) \to H_k(U; \mathbb{Z})$ and $j_*: H_k(W; \mathbb{Z}) \to H_k(V; \mathbb{Z})$ are zero for $1 \leq k \leq n$. Consider the following commutative diagram:

\[
\begin{array}{cccccc}
0 & \to & H_k(W; \mathbb{Z}) \otimes \mathbb{Z}_p & \to & H_k(W; \mathbb{Z}_p) & \to & \text{Tor}_1(H_{k-1}(W; \mathbb{Z}), \mathbb{Z}_p) & \to & 0 \\
& & \downarrow i_* \otimes \text{id} & \downarrow i_* & & & & \downarrow \text{id} & \\
0 & \to & H_k(V; \mathbb{Z}) \otimes \mathbb{Z}_p & \to & H_k(V; \mathbb{Z}_p) & \to & \text{Tor}_1(H_{k-1}(V; \mathbb{Z}), \mathbb{Z}_p) & \to & 0 \\
& & \downarrow j_* \otimes \text{id} & \downarrow j_* & & & & \downarrow \text{id} & \\
0 & \to & H_k(U; \mathbb{Z}) \otimes \mathbb{Z}_p & \to & H_k(U; \mathbb{Z}_p) & \to & \text{Tor}_1(H_{k-1}(U; \mathbb{Z}), \mathbb{Z}_p) & \to & 0 \\
\end{array}
\]

The horizontal rows, which are exact, are from the universal coefficient theorem. By our choice of W and V, the outer vertical maps are zero. Using a diagram chasing argument, we see that j_*i_* is the zero homomorphism.

Lemma 2. Let M^3 and N^3 be 3-manifolds, and let $f: M^3 \to N^3$ be a compact, monotone, onto map. Let p be 0 or a prime, and suppose M^3 is orientable if $p \neq 2$. If $f^{-1}(y)$ is strongly 1-acyclic over \mathbb{Z}_p for every $y \in N^3$, then each $f^{-1}(y)$ is strongly acyclic over \mathbb{Z}_p in M^3.

Proof. By Alexander duality and Theorem 3 of [8] we see that $H^k(f^{-1}(y); \mathbb{Z}_p) = 0$ for $k \geq 2$. Then the continuity of H^* and the universal coefficient theorem for cohomology show that $f^{-1}(y)$ is strongly acyclic over \mathbb{Z}_p for all $y \in N^3$. (For more details, see Theorems 4.4 and 3.2 of [7].)

Lemma 3. Let M^3 and N^3 be 3-manifolds, and let $f: M^3 \to N^3$ be a compact, monotone, onto map such that $f^{-1}(y)$ is strongly 1-acyclic over G for each $y \in N^3$. If $H_1(N^3; G) = 0$, then $H_1(M^3; G) = 0$.

The proof of Lemma 3 is similar to the proof of Theorem 2.1 of [15].
If M^n and N^n are n-manifolds with boundary, a map $f: M^n \to N^n$ is said to be boundary preserving if $f|\partial M^n$ is a homeomorphism of ∂M^n onto ∂N^n, and if $f^{-1}(\partial N^n) = \partial M^n$. A 2-manifold with boundary S is properly embedded in a 3-manifold with boundary M^3 if $S \cap \partial M^3 = \partial S$.

A Z_p-homology (homotopy) 3-cell is a compact Z_p-acyclic (contractible) 3-manifold with boundary. A cube-with-handles is obtained by adding orientable 1-handles to a 3-cell. We define a Z_p-homology (homotopy) cube-with-handles similarly. We will say that a set X is the intersection of a decreasing sequence of (Z_p-homology, homotopy) cubes-with-handles if $X = \bigcap_{i=1}^{\infty} K^3_i$ where each K^3_i is a (Z_p-homology, homotopy) cube-with-handles and $K^3_{i+1} \subset \text{Int} K^3_i$.

Theorem 1. Let p denote 0 or a prime, and let M^3 and N^3 be compact 3-manifolds, possibly with boundary, where M^3 is orientable if $p > 2$. Let $f: M^3 \to N^3$ be a monotone, onto, boundary preserving map. Let U be an open subset of N^3. If $f^{-1}(x)$ is strongly 1-acyclic over Z_p for all $x \in U$, then $\{x \in U : f^{-1}(x) \text{ is not cellular} \}$ is a finite set.

Remark. This theorem was first proved for $p = 0, 2$ in [16]. It has since been generalized by D. R. McMillan in [13].

Proof. The case where $p = 0$ reduces to the case where $p = 2$ by Lemma 1. By the proofs of Theorems 1 and 2 of [11] and by Kneser's Theorem [6] it is sufficient to prove that $\{x \in U : f^{-1}(x) \text{ is not } U\circ\alpha \}$ is finite.

We can apply Lemma 2 to see that $f^{-1}(x)$ is strongly acyclic over Z_p for each $x \in U$. By Theorem 2 of [12], $f^{-1}(x)$ is the intersection of a decreasing sequence of Z_p-homology cubes-with-handles.

Let q be the rank (i.e. the minimum number of generators) of $\pi_1(M^3)$. By a corollary to the Grushko-Neumann Theorem (p. 192 of [10]), there are at most q disjoint Z_p-homology 3-cells in M^3 which are not homotopy 3-cells. Thus there are at most q points in U whose inverse images are not the intersection of a decreasing sequence of homotopy cubes-with-handles.

Let $x \in U$, where $f^{-1}(x)$ is the intersection of a decreasing sequence of homotopy cubes-with-handles. We will complete the proof by showing that $f^{-1}(x)$ is $U\circ\alpha$. Let U' be an open set in M^3 containing $f^{-1}(x)$. There is a homotopy cube-with-handles H^3 such that

$$f^{-1}(x) \subset \text{Int } H^3 \subset H^3 \subset U' \cap f^{-1}(U).$$

Let W be an open 3-cell in U such that $x \in W$ and $f^{-1}(W) \subset \text{Int } H^3$. Define inductively G_0, G_1, G_2, \ldots by letting $G_0 = \pi_1(f^{-1}(W))$, and by letting

$$G_i = G_{i-1}(X_1X_2X_1^{-1}X_2^{-1}X_3^p).$$

(See p. 74 of [10] for notation.) In other words, G_i is the subgroup of G_{i-1} generated by all elements of the form $uwv^{-1}t^{-1}$ where $u, v, t \in G_{i-1}$. Let F_0, F_1, F_2, \ldots be the corresponding subgroups of $\pi_1(H^3)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
The subgroup G_1 certainly contains the commutator subgroup of G_0. The image of G_1 in $H_1(f^{-1}(W); Z)$ is $p \cdot H_1(f^{-1}(W); Z)$. Thus

$$\pi_1(f^{-1}(W))/G_1 \cong H_1(f^{-1}(W); Z)/p \cdot H_1(f^{-1}(W); Z) \cong H_1(f^{-1}(W); Z_p).$$

Let $\delta \in \pi_1(f^{-1}(W))$. Since $H_1(f^{-1}(W); Z_p) = 0$ (by Lemma 3), $\delta \in G_1$. Thus δ is a product of elements of the form $uw^{-1}r^{-1}r^p$ where $u, r, \tau \in G_0$. By applying the same argument to $u, r,$ and τ, we see that $u, r, \tau \in G_1$. Thus $\delta \in G_2$. By repeating this argument, $\delta \in \bigcap_{i=0}^{\infty} G_i$. By Corollary 2.12 on p. 109 of [10], $\bigcap_{i=1}^{\infty} F_i = 1$. Thus $\delta = 1$ in $\pi_1(H^3)$, and $f^{-1}(x)$ is UV^∞.

Corollary 1. Let M^3 and N^3 be 3-manifolds, possibly with boundary, and let $f: M^3 \to N^3$ be a compact, monotone, boundary preserving, onto map. Let p denote 0 or a prime, and suppose that M^3 is orientable if $p > 2$. If $f^{-1}(x)$ is strongly 1-acyclic over Z_p in M^3 for all $x \in U$, then $\{x \in U : f^{-1}(x)$ is not cellular $\}$ is a locally finite set in N^3.

III. Maps where the image of the singular set lies in a strongly acyclic set. We state below a slightly strengthened version of Theorem 2 of [13]: here we assume that M^3 is orientable only if $p > 2$, and thus the 1-handles which are attached to Bd Q_i to obtain H_i may be attached in a nonorientable fashion. (See the statement of Theorem 2 for the definition of Q_i and H_i.) The only additional difficulty in the proof is when we have $S_i \subset$ Bd Z^*_p and $S_k \subset$ Bd Z^*_p topologically parallel. (See p. 133 of [12].) As before, each loop in S_i, Z_p-bounds in Z^*_p, and the same argument shows that S_i is a 2-sphere if S_i is not homeomorphic to a projective plane. But if S_i is a projective plane, it must contain an orientation-reversing simple closed curve since S_i is two-sided. This contradicts the fact that every simple closed curve in S_i, Z_p-bounds in Z^*_p, since $p = 0, 2$.

Theorem 2. Let p denote 0 or a prime. Let X be a compact, proper subset of Int M^3, where M^3 is a 3-manifold, possibly with boundary. Suppose M^3 is orientable if $p > 2$, and suppose that X has the following property relative to M^3 and p. For each open set $U \subset M^3$ with $X \subset U$, there is an open set V, $X \subset U \subset V \subset U$, such that, under inclusion, $H_1(V - X; Z_p) \to H_1(U; Z_p)$ is zero. Then $X = \bigcap_{i=1}^{\infty} H_i$, where H_i is a compact polyhedron in M^3, each component of H_i is a 3-manifold with nonempty boundary, $H_{i+1} \subset$ Int H_i and each H_i has the following structure: it is obtained from a compact polyhedron Q_i, each component of which is a 3-manifold whose boundary consists entirely of 2-spheres, by adding to Bd Q_i a finite number of (solid, possibly nonorientable) 1-handles.

Let $f: M \to N$ be a map. Then let $S_f = \{x \in M : f^{-1}(x) \text{ is nondegenerate}$.}

Theorem 3. Let p denote 0 or a prime. Let M^3 and N^3 be piecewise-linear 3-manifolds, possibly with boundary, where M^3 is orientable if $p \neq 2$. Let X be a compact subset of Int N^3 such that each component of X is strongly acyclic over Z_p. Let $f: M^3 \to N^3$ be a compact, boundary preserving map with $f(S_f) \subset X$. Then N^3 can
be obtained from M^3 by cutting out of $\text{Int } M^3$ a finite number of polyhedral 3-manifolds which are each bounded by a 2-sphere, and replacing each by a polyhedral \mathbb{Z}_p-homology 3-cell.

Proof. By Theorem 2 of [12], X is the intersection of a decreasing sequence of \mathbb{Z}_p-homology cubes-with-handles. Thus we can assume that N^3 is a \mathbb{Z}_p-homology cube-with-handles, and that each two-sided surface in $\text{Int } N^3$ separates N^3.

The first half of the proof will be to show that $f^{-1}(X)$ has the following property in $\text{Int } M^3$: for each open set $U \subset \text{Int } M^3$ with $f^{-1}(X) \subset U$, there is an open set V, with $f^{-1}(X) \subset V \subset U$, such that, under inclusion, $H_1(V - f^{-1}(X); \mathbb{Z}_p) \to H_1(U; \mathbb{Z}_p)$ is zero.

Let U be an open set in $\text{Int } M^3$ with $f^{-1}(X) \subset U$. Since $\text{Cl}(S_i) \subset U$, $f(U)$ is open. Let Z^3 be a compact polyhedron in $f(U)$ such that each component of Z^3 is a 3-manifold with boundary, and such that $X \subset \text{Int } Z^3$. Since X is strongly 1-acyclic over \mathbb{Z}_p, there is an open set W containing X such that, under inclusion

$$H_1(W - X; \mathbb{Z}_p) \to H_1(Z^3; \mathbb{Z}_p)$$

is zero.

Let $V = f^{-1}(W)$, and let $[\sigma] \in H_1(V - f^{-1}(X); \mathbb{Z}_p)$ where we can assume that σ is a finite, pairwise disjoint collection of (oriented, if $p \neq 2$) simple closed curves such that $f(\sigma)$ is polyhedral in Z^3. Let F^3 be a regular neighborhood of $f(\sigma)$ in $(\text{Int } Z^3) - X$. We can triangulate Z^3 so that F^3 and $f(\sigma)$ are subcomplexes of the triangulation. Then the homeomorphism $f^{-1}|(\text{Bd } Z^3 \cup F^3)$ induces a triangulation of $f^{-1}(\text{Bd } Z^3 \cup F^3)$. Since each of the finite number of components of $f^{-1}(Z^3)$ is a 3-manifold with boundary, by Theorem 5 of [2] there is a triangulation of $f^{-1}(Z^3)$ which is compatible with the above triangulation of $f^{-1}(\text{Bd } Z^3 \cup F^3)$. Using the relative simplicial approximation theorem, there is a piecewise-linear, nondegenerate map g from $f^{-1}(Z^3)$ onto Z^3 such that

$$g|f^{-1}(\text{Bd } Z^3 \cup F^3) = f|f^{-1}(\text{Bd } Z^3 \cup F^3),$$
$$g^{-1}(\text{Bd } Z^3 \cup F^3) = f^{-1}(\text{Bd } Z^3 \cup F^3).$$

By subdividing we can assume that g is simplicial.

At this point we divide the remainder of the first half of the proof into three cases: Case 1 ($p = 0$), Case 2 ($p = 2$), and Case 3 ($p > 2$).

Case 1 ($p = 0$). Since $f(\sigma) \subset W - X$, $[f(\sigma)] = 0$ in $H_1(Z^3; \mathbb{Z})$. Thus $f(\sigma)$ must bound a 2-complex L^2 in Z^3 where each component of L^2 is an orientable, two-sided 2-manifold with boundary. We can adjust L^2 slightly so that it is in general position mod $f(\sigma)$ with respect to our last triangulation of Z^3. Then $g^{-1}(L^2)$ will be a 2-complex in $f^{-1}(Z^3) \subset U$, where each component of $g^{-1}(L^2)$ is a two-sided 2-manifold with boundary. Thus, since M^3 is orientable, each component of $g^{-1}(L^2)$ is orientable. Since σ bounds $g^{-1}(L^2)$, $[\sigma] = 0$ in $H_1(U; \mathbb{Z})$, and the inclusion-induced homomorphism $H_1(V - f^{-1}(X); \mathbb{Z}) \to H_1(U; \mathbb{Z})$ is trivial.
Case 2 \((p=2)\). The proof is essentially the same as Case 1, except that \(L^2\) and \(g^{-1}(L^2)\) may not be orientable.

Case 3 \((p > 2)\). Note that
\[
H_1(Z^3; \mathbb{Z})/G \cong H_1(Z^3; \mathbb{Z}) \otimes \mathbb{Z}_p \cong H_1(Z^3; \mathbb{Z}_p)
\]
where \(G\) is the subgroup of \(H_1(Z^3; \mathbb{Z})\) generated by elements of the form \(p[y]\) where \([y] \in H_1(Z^3; \mathbb{Z})\). Since \([f(\alpha)] = 0\) in \(H_1(Z^3; \mathbb{Z}_p)\), there is a 1-cycle \([\tau] \in H_1(Z^3; \mathbb{Z})\) so that \([f(\alpha)] = p[\tau]\) in \(H_1(Z^3; \mathbb{Z})\). We can assume that \(\tau\) is a finite, pairwise disjoint collection of polyhedral, oriented, simple closed curves which are in general position with respect to our last triangulation of \(Z^3\). Then \(g^{-1}(\tau)\) is a finite, pairwise disjoint collection of simple closed curves in \(f^{-1}(Z^3)\). We can find a regular neighborhood \(T^3\) of \(\tau\) so close to \(\tau\) that \(g^{-1}(T^3)\) is a regular neighborhood of \(g^{-1}(\tau)\). We can find a 1-cycle \([\delta] \in H_1(Bd T^3; \mathbb{Z})\) so that \([f(\alpha)] = p[\delta]\) in \(H_1(Z^3 - \text{Int } T^3; \mathbb{Z})\). We can assume that \(\delta\) is a finite collection of mutually exclusive, oriented, simple closed curves on \(Bd T^3\). Then there is a 2-complex \(L^2 \subset Z^3 - \text{Int } T^3\) where each component of \(L^2\) is a two-sided, orientable, 2-manifold, and where \(Bd L^2 = f(\epsilon) \cup \delta\) (homologically \(f(\alpha) - \delta\)). We can assume that \(L^2\) is in general position mod \(f(\alpha)\) with respect to our last triangulation of \(Z^3\). Then \(g^{-1}(L^2)\) will be a 2-complex where each component of \(g^{-1}(L^2)\) is a two-sided 2-manifold with boundary. Thus \(g^{-1}(L^2)\) is orientable.

Since \(L^2\) is two-sided in \(Z^3\), \(\delta\) is two-sided in \(Bd T^3\). Thus \(g^{-1}(\delta)\) is two-sided in \(g^{-1}(Bd T^3)\), and using this two-sidedness, we can induce an orientation of \(g^{-1}(\delta)\) which is consistent with that on \(g^{-1}(L^2)\). Thus \([g^{-1}(\delta)] = [\alpha]\) in \(H_1(f^{-1}(Z^3); \mathbb{Z})\).

Let \(\alpha\) be a meridional curve on \(Bd T^3\) which is in general position with respect to \(\delta\). Then \(\alpha\) will intersect \(\delta\) algebraically \(\pm p\) times. Since the two-sidedness of \(\delta\) is preserved by \(g^{-1}\), each component of \(g^{-1}(\alpha)\) which is a meridional curve must intersect \(g^{-1}(\delta)\) algebraically \(\pm p\) times. Thus, \([g^{-1}(\delta)] = p[g^{-1}(\tau)]\) in \(H_1(T^3; \mathbb{Z})\).

Therefore, \([\alpha] = p[g^{-1}(\tau)]\) in \(H_1(Z^3; \mathbb{Z})\), and the inclusion-induced homomorphism \(H_1(V - X; \mathbb{Z}_p) \rightarrow H_1(U; \mathbb{Z}_p)\) is trivial. This completes Case 3.

By Theorem 2, we can find a compact polyhedron \(H_0^3\), where each component of \(H_0^3\) is a 3-manifold with nonempty boundary, and where \(H_0^3\) has the following structure: it is obtained from a compact polyhedron \(Q_0^3\), each component of which is a 3-manifold whose boundary consists entirely of 2-spheres, by adding to \(Bd Q_0^3\) a finite number of (solid, possibly nonorientable) 1-handles.

We can also assume that each 1-handle is attached to only one boundary component of \(Bd Q_0^3\) since we can add 1-handles to \(Bd Q_0^3\) which join different components of \(Bd Q_0^3\) without destroying the property that \(Bd Q_0^3\) consists entirely of 2-spheres.

We claim that each component of \(Bd Q_0^3\) separates \(M^3\). For suppose that \(S_0\) is a component of \(Bd Q_0^3\) that does not separate \(M^3\). Then there is a polyhedral simple closed curve \(J\) which intersects \(S_0\) at exactly one point which is a piercing point. It is easy to see that we can choose \(J\) so that it does not intersect any of the 1-handles.
which are added to Q_0^3 to obtain H_0^3. Let S_1 be the component of $\text{Bd } H_0^3$ which is obtained from S_0 by adding handles. Then J intersects S_1 only in the same piercing point. Since $f^{-1}|f(\text{Bd } H_0^3)$ is a homeomorphism, $f(J)$ is a loop in N^3 which intersects $f(S_1)$ in exactly one piercing point. Thus $f(S_1)$ does not separate N^3. But $f(S_1)$ is a 2-sided surface in N^3, so $f(S_1)$ must separate N^3. This is a contradiction, so S_0 does separate M^3.

Let Q^3 be the closure of the “inside” complementary domains of the “outermost” boundary components of Q_0^3. (Here, “inside” and “outermost” are relative to $\text{Bd } M^3$, which is connected.) Thus we have “filled in the holes” in Q_0^3 to obtain Q^3, and each component of Q^3 has connected boundary. We define H^3 to be Q^3 union the 1-handles of $H_0^3 - Q_0^3$ which are not already contained in Q_3.

There are properly embedded polyhedral disks B_1^3, \ldots, B_r^3 in H^3 such that the 1-handles which are added to Q^3 to obtain H^3 are regular neighborhoods of B_1^3, \ldots, B_r^3 in H^3. Let these 1-handles be $N(B_1^3), \ldots, N(B_r^3)$. Since $S_i \subset f^{-1}(X) \subset \text{Int } H^3$, each component of $f(H^3)$ is a 3-manifold with boundary in $\text{Int } N^3$. Each B_i^3 is mapped properly into $f(H^3)$ by f, and furthermore, $f|B_i^3$ has no singularities near $\text{Bd } B_i^3$. So by Dehn’s Lemma, there exist nonsingular properly embedded polyhedral disks D_1^3, \ldots, D_r^3 in $f(H^3)$ with $\text{Bd } D_i^3 = f(\text{Bd } B_i^3)$. By a cutting and pasting argument, we can choose D_1^3, \ldots, D_r^3 to be disjoint. We can also find disjoint regular neighborhoods $N(D_1^3), \ldots, N(D_r^3)$ of D_1^3, \ldots, D_r^3 in $f(H^3)$ so that $\quad f(N(B_i^3) \cap \text{Bd } H^3) = N(D_i^3) \cap \text{Bd } f(H^3).$

For each i, there is a homeomorphism $h_i: N(B_i^3) \rightarrow N(D_i^3)$ such that $\quad h_i| (\text{Bd } H^3 \cap N(B_i^3)) = f| (\text{Bd } H^3 \cap N(B_i^3)).$

We define a homeomorphism $\quad h: M^3 - \text{Int } Q^3 \rightarrow (N^3 - \text{Int } f(H^3)) \cup \left(\bigcup_{i=1}^r N(D_i^3) \right)$

by $h|(M^3 - \text{Int } H^3) = f|(M^3 - \text{Int } H^3)$, and by $h|N(B_i^3) = h_i$ for each $i = 1, \ldots, r$.

Then $h(\text{Bd } Q^3)$ is a finite disjoint collection of 2-spheres in N^3 each of which bounds a Z_p-homology 3-cell. Furthermore, these homology 3-cells are disjoint since each component of $h(\text{Bd } Q^3)$ is outermost in the sense that it can be joined to $\text{Bd } N^3$ with an arc which misses $h(\text{Bd } Q^3)$ except at one end point.

Let K_1^3, \ldots, K_r^3 be these homology 3-cells, and let Q_1^3, \ldots, Q_m^3 be the corresponding components of Q^3 so that $h^{-1}(\text{Bd } K_i^3) = \text{Bd } Q_i^3$. Each Q_i^3 is a 3-manifold with 2-sphere boundary. Then h is a homeomorphism from $M^3 - (\bigcup_{i=1}^r Q_i^3)$ onto $N^3 - (\bigcup_{i=1}^m K_i^3)$. Thus we obtain N^3 from M^3 by cutting out the Q_i^3's and replacing each with the corresponding K_i^3.

Remark. If we define $*Q_i^3$ to be the closed 3-manifold obtained from Q_i^3 by sewing a 3-cell onto $\text{Bd } Q_i^3$, and if we define $*K_i^3$ to be the closed 3-manifold obtained from K_i^3 in the same way, then $\quad M^3 \# *K_1^3 \# \cdots \# *K_r^3 \cong N^3 \# *Q_1^3 \# \cdots \# *Q_m^3.$
We should also note that we have shown that for any open set \(U \) in \(M^3 \) which contains \(X \), then \(f^{-1}(X) \) has a polyhedral neighborhood \(H^3 \subseteq U \) where each component of \(H^3 \) is formed by adding 1-handles to a 3-manifold with 2-sphere boundary. Furthermore, we have shown that these 1-handles are attached in an orientable fashion to the 2-sphere boundary.

Corollary 2. Let \(M^3 \) and \(N^3 \) be compact 3-manifolds, possibly with boundary. Let \(X \) be a compact proper set in \(\text{Int } N^3 \) with the following property: For each open set \(U \subseteq \text{Int } N^3 \) with \(X \subseteq U \), there is an open set \(V, X \subseteq V \subseteq U \), such that under inclusion \(H_1(V-X; Z_p) \to H_1(V; Z_p) \) is zero. Suppose also that \(X \) has a polyhedral neighborhood each component of which is an orientable, irreducible 3-manifold with boundary. If there is a boundary preserving map \(f \) from \(M^3 \) onto \(N^3 \) such that \(f(S_f) \subseteq X \), then \(M^3 \) can be obtained from \(N^3 \) by removing the interiors of a finite number of 3-manifolds each of which is bounded by a 2-sphere, and by replacing each by a 3-cell.

Proof. By using Theorem 2 and the fact that \(X \) has a polyhedral neighborhood each component of which is an irreducible 3-manifold with boundary, we see that \(X \) has a polyhedral neighborhood each component of which is a cube-with-handles. Thus we can assume that \(N^3 \) is a cube-with-handles. The remainder of the proof of Theorem 3 now goes through with the weaker hypothesis on \(X \).

Theorem 4. Let \(M^3 \) and \(N^3 \) be 3-manifolds, possibly with boundary, and let \(f: M^3 \to N^3 \) be an onto, compact, boundary preserving mapping from \(M^3 \) onto \(N^3 \) such that \(f(S_f) \subseteq X \) where \(X \) is a closed 0-dimensional set in \(N^3 \). Then \(f \) is monotone, and \(\{ x \in N^3 : f^{-1}(x) \) is not cellular in \(M^3 \} \) is a locally finite subset of \(N^3 \).

Proof. Let \(x \in X \), and let \(U \) be an arbitrarily small open 3-cell containing \(x \). Then there is a polyhedral 3-manifold with boundary \(K^3 \) so that \(x \in \text{Int } K^3 \subseteq K^3 \subseteq U \) and so that \(\text{Bd } K^3 \cap X = \emptyset \). In fact, using Theorem 2 of [12] and the fact that \(U \) is irreducible, we can see that \(K^3 \) can be chosen to be a cube-with-handles. Then \(f^{-1}(K^3) \) is a connected neighborhood of \(f^{-1}(x) \) which can be chosen "arbitrarily close" to \(f^{-1}(x) \). Thus \(f \) is monotone.

We can cover \(X \) with the interiors of a locally finite collection of mutually exclusive collection of cubes-with-handles. Thus, in order to prove the theorem, it suffices to consider the case where \(N^3 \) is a cube-with-handles, and where \(M^3 \) is a compact 3-manifold with connected boundary. In this case, we will prove that all but a finite number of point inverses of \(f \) are cellular.

The set \(X \) is strongly 1-acyclic over \(Z_2 \) in \(N^3 \), and thus by the remark following the proof of Theorem 3, we have \(f^{-1}(X) = \bigcap_{i=1}^{\infty} H^3_i \), where \(H^3_i \) is a 3-manifold with connected boundary, and where \(H^3_i \subseteq \text{Int } H^3_{i-1} \). We can assume that \(H^3_i \) is obtained from a compact polyhedron \(Q_i^3 \) where each component of \(Q_i^3 \) is a 3-manifold with 2-sphere boundary, by adding to \(\text{Bd } Q_i^3 \) a finite number of (orientable, solid) 1-handles. We also have that each 1-cycle in \(\text{Bd } H^3_i \) bounds in \(\text{Int } H^3_{i-1} \). We have assumed that \(M^3 \) is compact and that \(H_1(M^3; Z_2) \) is finitely generated;
so it is easy to show that there is an integer N so that there are not more than N disjoint 3-manifolds with 2-sphere boundary and nontrivial \mathbb{Z}_2-homology in $\text{Int} \, M^3$. Therefore, all but at most N components of $f^{-1}(X)$ are the intersection of a decreasing sequence of \mathbb{Z}_2-homology cubes-with-handles.

If Z_3^j is a \mathbb{Z}_2-homology cube-with-handles, the inclusion-induced homomorphism $H_1(\text{Bd} \, Z_3^j; \mathbb{Z}_2) \to H_1(Z_3^j; \mathbb{Z}_2)$ is onto. Thus, if $Z_3^j \subset \text{Int} \, Z_3^{j-1}$ where Z_3^{j-1} is another \mathbb{Z}_2-homology cube-with-handles, and if each 1-cycle in $\text{Bd} \, Z_3^j \, \mathbb{Z}_2$-bounds in $\text{Int} \, Z_3^{j-1}$, then the inclusion-induced homomorphism $H_1(Z_3^j; \mathbb{Z}_2) \to H_1(Z_3^{j-1}; \mathbb{Z}_2)$ is trivial. Therefore, each component of $f^{-1}(X)$ which is the intersection of \mathbb{Z}_2-homology cubes-with-handles must be strongly 1-acyclic over \mathbb{Z}_2. This shows that at most a finite number of point inverses of f are not strongly 1-acyclic over \mathbb{Z}_2.

We can now apply Theorem 1 which implies that only a finite number of the strongly 1-acyclic over \mathbb{Z}_2 point inverses of f are not cellular.

IV. Maps almost all of whose point inverses are strongly 1-acyclic over \mathbb{Z}_p.

Lemma 4. Let $f: M \to N$ be a compact map from a metric space M onto a metric space N. Let X be a closed set in N. Let G be a decomposition of M defined by

$$G = \{ f^{-1}(y) : y \in X \} \cup \{ x \in M : f(x) \notin X \}.$$

Let $Q = M/G$ and let $\pi: M \to Q = M/G$ be the projection map for the decomposition G. Let $p: Q \to N$ be defined so as to make the following diagram commute:

$$
\begin{array}{ccc}
M & \xrightarrow{\pi} & Q \\
f \downarrow & & \downarrow p \\
N & & \\
\end{array}
$$

Then

1. G is upper semicontinuous and hence π is continuous and compact.
2. The decomposition $\{ p^{-1}(y) : y \in N \}$ is upper semicontinuous and hence p is continuous and compact.

Proof. Lemma 4 follows from the fact that $\{ f^{-1}(y) : y \in N \}$ is an upper semicontinuous decomposition of M.

Lemma 5. Let $p: Q \to N^3$ be a compact, monotone map from a metric space Q onto a 3-manifold N^3, possibly with boundary. Let X be a closed set in N^3 containing $\text{Bd} \, N^3$. Suppose that $p|p^{-1}(X)$ is a homeomorphism, and that $W = Q - p^{-1}(X)$ is an open 3-manifold. If $p^{-1}(x)$ is cellular for all $x \in N^3 - X$, then there is a homeomorphism $h: N^3 \to Q$ such that $h|X = p^{-1}|X$.

The proof of Lemma 9 is the same as the proof of Theorem 1 of [1].

Suppose $f: M^3 \to N^3$ is a mapping. We let $A^p_f = \{ x \in M^3 : f^{-1}(f(x))$ is either not connected or is not strongly 1-acyclic over $\mathbb{Z}_p \}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 5. Let \(p \) denote 0 or a prime, and let \(M^3 \) and \(N^3 \) be compact 3-manifolds, possibly with boundary, where \(M^3 \) is orientable if \(p \neq 2 \). Let \(Y \) be a compact set in \(\text{Int } N^3 \) each component of which is strongly acyclic over \(\mathbb{Z}_p \). Let \(f: M^3 \to N^3 \) be an onto, boundary preserving map such that \(f(A_p^3) \subseteq Y \). Then \(N^3 \) can be obtained from \(M^3 \) by cutting out of \(M^3 \) a finite number of polyhedral 3-manifolds, each bounded by a 2-sphere, and replacing each by a \(\mathbb{Z}_p \)-homology 3-cell.

Proof. By Theorem 1 there are only a finite number of points \(x_1, x_2, \ldots, x_n \) in \(N^3 - Y \) whose inverses under \(f \) are not cellular in \(M^3 \). Let

\[
X = Y \cup \{x_1, x_2, \ldots, x_n\} \cup \text{Bd } N^3.
\]

We use this \(X \) to define \(Q, \pi: M^3 \to Q, \) and \(p: Q \to N^3 \) as in Lemma 4. Since \(\pi \left(M^3 - f^{-1}(X) \right) \) is a homeomorphism from \(M^3 - f^{-1}(X) \) onto \(W = Q - p^{-1}(X) \), \(W \) is an open 3-manifold. And since \(p | p^{-1}(X) \) is one-to-one and continuous, \(p | p^{-1}(X) \) is a homeomorphism. Therefore, by Lemma 5, there is a homeomorphism \(h: N^3 \to Q \). In particular, \(Q \) is a 3-manifold \(Q^3 \). Let

\[
X' = Y \cup \{x_1, \ldots, x_n\}.
\]

Then \(\pi(S_a) \subseteq p^{-1}(X') = h(X') \), and \(X' \) is strongly acyclic over \(\mathbb{Z}_p \), so the map \(\pi \) satisfies the hypotheses of Theorem 3.

Theorem 6. Let \(p \) denote 0 or a prime, and let \(M^3 \) and \(N^3 \) be 3-manifolds, possibly with boundary, where \(M^3 \) is orientable if \(p > 2 \). Let \(Y \) be a closed 0-dimensional set in \(\text{Int } N^3 \), and let \(f: M^3 \to N^3 \) be an onto, compact, boundary preserving map such that \(f(A_p^3) \subseteq Y \). Then \(\{x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3 \} \) is a locally finite subset of \(N^3 \).

Proof. By Corollary 1, the set \(\{x \in N^3 - Y : f^{-1}(x) \text{ is not cellular in } M^3 \} \) is a locally finite subset of \(N^3 \).

Let

\[
X = Y \cup \text{Bd } N^3 \cup \{x \in N^3 - Y : f^{-1}(x) \text{ is not cellular}\}.
\]

Let \(Q, \pi: M^3 \to Q, p: Q \to N^3, \) and \(h: N^3 \to Q \) be defined as in Lemmas 4 and 5. Let

\[
X' = Y \cup \{x \in N^3 - Y : f^{-1}(x) \text{ is not cellular}\}.
\]

Then \(\pi(S_a) \subseteq p^{-1}(X') = h(X') \), and thus \(\pi(S_a) \) is contained in a closed 0-dimensional set in \(Q \). Theorem 4 can be applied to the map \(\pi: M^3 \to Q^3 \) to say that

\[
\{y \in Q^3 : \pi^{-1}(y) \text{ is not cellular in } M^3 \}
\]

is a locally finite subset of \(Q^3 \). The image under \(p \) (or \(h^{-1} \)) of this set is

\[
\{x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3 \}
\]

which must then be a locally finite subset of \(N^3 \).
V. Further applications. The following lemma is a slight generalization of Lemma 5 of [13]. While the proof of Lemma 5 of [13] suffices to prove our Lemma 6, a proof is included here for completeness and since part of the proof will be needed to prove Theorem 7.

Lemma 6. Let \(M^3 \) and \(N^3 \) be 3-manifolds. Let \(f: M^3 \to N^3 \) be a compact, monotone mapping so that \(f(S_t) \) is 0-dimensional. Let \(x \in N^3 \). If there is an open set \(U \) containing \(f^{-1}(x) \) so that the inclusion-induced homomorphism from \(H_1(U; Z) \) into \(H_1(M^3; Z) \) is trivial, then \(f^{-1}(x) \) is strongly 1-acyclic over \(Z \).

Proof. Let \(B^3 \) be an open 3-cell in \(N^3 \) with compact closure so that \(x \in B^3 \) and \(W = f^{-1}(B^3) \) is contained in \(U \). Let \(K_1, K_2, K_3, \ldots \) be a locally finite collection of compact sets in \(W \) so that \(\bigcup_{i=1}^{\infty} K_i = W \) and each \(K_i \) is contained in an open 3-cell \(B_i^3 \subset W \). Let

\[
\epsilon_i = \inf \{ \rho(x, y) : x \in K_i \text{ and } y \in W - B_i^3 \}
\]

where \(\rho \) is a metric on \(M^3 \). Let

\[
C_i = \{ x \in N^3 : \text{diam} (f^{-1}(x)) \geq \epsilon_i \text{ and } f^{-1}(x) \cap K_i \neq \emptyset \}.
\]

It is easy to see that each \(C_i \) is a closed set. Let \(C = \bigcup_{i=1}^{\infty} C_i \).

We will show that \(\{ f(K_i) \} \) is a locally finite collection in \(B^3 \). Let \(x_0 \in B^3 \) and let \(V \) be a neighborhood of \(x_0 \) in \(B^3 \) with compact closure. Since \(f \) is a compact map, \(f^{-1}(V) \) has compact closure. Since \(\{ K_i \} \) is a locally finite collection in \(W \), \(f^{-1}(V) \) intersects only a finite number of the \(K_i \)'s, and thus \(V \) intersects only a finite number of the \(f(K_i) \)'s. Using the fact the \(\{ f(K_i) \} \) is a locally finite collection, we see that \(C \) is a closed 0-dimensional subset of \(B^3 \).

Consider the following commutative diagram where the horizontal maps are induced by inclusion, and the vertical maps are induced by \(f \).

\[
\begin{array}{ccc}
H_1(W - f^{-1}(C); Z) & \xrightarrow{\alpha} & H_1(W; Z) \\
\downarrow & & \downarrow \\
H_1(B^3 - C; Z) & \longrightarrow & H_1(B^3; Z)
\end{array}
\]

First, we claim that \(\alpha \) is an epimorphism. Let \([\delta] \in H_1(W; Z)\) where \(\delta \) is a simple closed curve. Let \(O \) be an open set in \(B^3 \) so that \(f(\delta) \subset O \) and \((\text{Bd } O) \cap C = \emptyset \). By applying Lemma 2 of [13], we see that \(\delta \) is homologous in \(f^{-1}(O) \) to a 1-cycle in \(f^{-1}(O) - f^{-1}(O \cap C) \subset W - f^{-1}(C) \).

Finally, we claim that \(\alpha \) is the zero homomorphism. Let \([\tau] \in H_1(W - f^{-1}(C); Z)\) where \(\tau \) is a simple closed curve. We can also suppose that \(f(\tau) \) is a simple closed curve, and that \(f(\tau) \) bounds an orientable surface \(S \) in \(B^3 - C \). By our choice of the \(\epsilon_i \)'s, for each \(y \in B^3 - C \), there is an open set \(V_y \) so that \(f^{-1}(V_y) \) is contractible in \(W \). Let \(\mathcal{V} = \{ V_y : y \in B^3 - C \} \). We can find a triangulation \(T \) of \(S \) which is so fine that
for each 2-simplex $\sigma \in T$, there is a $V_\sigma \in \mathcal{V}$ so that $\sigma \subset V_\sigma$. Using the fact that f is monotone, we can find a map h from the 1-skeleton of T into $W - f^{-1}(C)$ so that, if σ is a 2-simplex of T, $h(\partial \sigma) \subset f^{-1}(V_\sigma)$. (See the proof of Theorem 2.1 of [15] for details.) We can also suppose that $hf | \tau$ is the identity. Since each V_σ is contractible in W, h can be extended to a map H which takes the surface S into W and which takes ∂S onto τ. Thus, $a[\sigma] = 0$ in $H_1(W; \mathbb{Z})$.

Theorem 7. Let M^3 and N^3 be 3-manifolds, possibly with boundary. Let f be a compact, monotone, boundary preserving mapping from M^3 onto N^3 such that $f(S_f)$ is 0-dimensional. Then $\{x \in N^3 : f^{-1}(x)$ is not cellular $\}$ is a locally finite subset of N^3.

Proof. By a procedure similar to the first part of the proof of Lemma 6, we can find a closed set $C \subset f(S_f) \subset N^3$ so that, if $x \notin C$, then there is an open set U_x where $f^{-1}(x) \subset U_x$ and U_x is contractible in M^3. By Lemma 6, if $x \in N^3 - C$, then $f^{-1}(x)$ is strongly 1-acyclic over \mathbb{Z}. Thus $f(A^0) \subset C$, and C is a closed 0-dimensional set. Theorem 7 now follows from Theorem 6.

Let $f: M^3 \to N^3$ be an onto, compact, boundary preserving map as before. Many of our earlier results have shown that $\{x \in N^3 : f^{-1}(x)$ is not cellular in $M^3 \}$ is a locally finite subset of N^3. The following three corollaries concern mappings of this type.

Corollary 3. Let M^3 and N^3 be 3-manifolds, possibly with boundary. Let $f: M^3 \to N^3$ be a compact, monotone, boundary preserving mapping such that $\{x \in N^3 : f^{-1}(x)$ is not cellular $\}$ is a locally finite subset of N^3. Then

(i) For each $x \in N^3$ and each open set U containing $f^{-1}(x)$, there is an open set V with $f^{-1}(x) \subset V \subset U$, such that $V - f^{-1}(x)$ is homeomorphic to $S^2 \times (0, 1)$.

(ii) N^3 can be obtained from M^3 by cutting out of M^3 a locally finite collection of mutually exclusive, polyhedral 3-manifolds, each with 2-sphere boundary, and replacing each by a 3-cell.

Proof. (i) If $f^{-1}(x)$ is cellular, this follows from Theorem 1 of [3].

Let x_1, x_2, x_3, \ldots be the points in N^3 such that $f^{-1}(x_i)$ is not cellular for $i = 1, 2, 3, \ldots$. Let $X = \{x_1, x_2, x_3, \ldots \} \cup \text{Bd } N^3$. Let the 3-manifold Q^3, the maps $\pi: M^3 \to Q^3$, $p: Q^3 \to N^3$, and the homeomorphism $h: N^3 \to Q^3$ be defined as in Lemmas 4 and 5. It will be sufficient to show that $f^{-1}(x_i)$ has the required neighborhood. We are given an open set $U \supset f^{-1}(x_i)$. Let U' be an open set in M^3 so that $f^{-1}(x_i) \subset U' \subset U$ and $U' \cap f^{-1}(x_i) = \emptyset$ for $i \geq 2$. Then $h^{-1}(U')$ is an open set containing x_i in N^3. Let W be an open 3-cell so that $x_i \subset W \subset h^{-1}(U')$. Let $V = \pi^{-1} h(W)$. Then $V - f^{-1}(x_i)$ is homeomorphic by $\pi^{-1} h$ to $W - \{x_i\}$ which is homeomorphic to $S^2 \times (0, 1)$.

(ii) As in part (i) let x_1, x_2, x_3, \ldots be the points of N^3 whose inverses are not cellular. We can find pairwise disjoint closed neighborhoods K_1, K_2, K_3, \ldots of $f^{-1}(x_1), f^{-1}(x_2), f^{-1}(x_3), \ldots$ respectively so that $K_i - f^{-1}(x_i)$ is homeomorphic to $S^2 \times (0, 1]$. Then each K_i is a 3-manifold with 2-sphere boundary, and $\pi | K_i$ is a
boundary preserving map of K_i onto a 3-cell. Furthermore, $\pi|_{M^3 - \bigcup_{i=1}^{n} K_i}$ is a homeomorphism. Thus Q^3 can be obtained by cutting K_1, K_2, K_3, \ldots out of M^3, and replacing each by a 3-cell.

Corollary 4. Let M^3 and N^3 be compact 3-manifolds, possibly with boundary. Let $f: M^3 \to N^3$ be a boundary preserving, onto map such that $\{x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3\}$ is a finite set. If M^3 is homeomorphic to N^3, then $f^{-1}(x)$ is cellular for every $x \in N^3$.

Proof. By Corollary 3, part (ii), there are closed 3-manifolds $*K^3_0, \ldots, *K^3_n$ such that

$$M^3 = N^3 \# *K^3_0 \# \cdots \# *K^3_n.$$

By a corollary to the Grushko-Neumann Theorem (see p. 192 of [10]), the rank of $\pi_1(M^3)$ is equal to the sum of the ranks of $\pi_1(N^3), \pi_1(K^3_0), \ldots, \pi_1(K^3_n)$. Therefore

$$\pi_1(*K^3_0) = \cdots = \pi_1(*K^3_n) = 1,$$

and each $*K^3_i$ ($i=0, \ldots, n$) is a homotopy 3-sphere.

If M^3 is closed and orientable, we use the unique decomposition theorem of Milnor [14] to show that $*K^3_0, \ldots, *K^3_n$ are all 3-spheres. This shows that $f^{-1}(x)$ is cellular for every $x \in N^3$.

If M^3 is orientable with boundary, we can sew a cube-with-handles onto each boundary component of M^3 to obtain a closed manifold M^3_0. The homeomorphism from M^3 to N^3 induces a similar sewing of cubes-with-handles onto $\text{Bd } N^3$ to give a closed 3-manifold N^3_0 which is homeomorphic to M^3_0. We have

$$M^3 = N^3 \# *K^3_0 \# \cdots \# *K^3_n$$

and the argument for the closed orientable case applies.

If M^3 is nonorientable, we apply the previous argument to the orientable double covering of M^3.

Corollary 5. Let M^3 and N^3 be compact (i.e., closed) 3-manifolds. Let $f: M^3 \to N^3$ be an onto map such that $\{x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3\}$ is finite, and let $g: N^3 \to M^3$ be an onto map such that $\{x \in M^3 : g^{-1}(x) \text{ is not cellular in } N^3\}$ is finite. Then M^3 is homeomorphic to N^3.

Proof. By Corollary 2, we have $M^3 = N^3 \# *K^3_0 \# \cdots \# *K^3_n$ and $N^3 = M^3 \# *Q^3_0 \# \cdots \# *Q^3_n$. By a corollary to the Grushko-Neumann Theorem (p. 192 of [10]) we see that $*K^3_0, \ldots, *K^3_n, *Q^3_0, \ldots, *Q^3_n$ are all homotopy 3-spheres. This implies that all of the point inverses of f and g have property $UV\infty$. Then Corollary 5 follows from Corollary 2.3 of [11].

VI. On Haken’s finiteness theorem. In [5], Wolfgang Haken stated a finiteness theorem for incompressible surfaces in a compact 3-manifold M^3. We are interested here only in the special case of the theorem where the surfaces are closed: this
case is stated as Theorem C. Some difficulties arise with Haken's proof in the case where M^3 is not irreducible. Haken's proof is correct and can be simplified considerably in the case where M^3 is irreducible. We give here an argument due to John Hempel to show that the finiteness theorem holds in the case where M^3 may not be irreducible. Haken intended to prove Kneser's Theorem [7] as a special case of the finiteness theorem; our argument uses Kneser's Theorem. The previous results of this paper depend on the finiteness theorem directly through Theorem 2 of [12].

In this section we will be working in the piecewise-linear category. A surface is a 2-manifold. If F^2 is a surface in a 3-manifold M^3, and if F^2 is not a 2-sphere, then F^2 is incompressible in M^3 if every simple closed curve in F^2 that bounds an (open) disk in $M^3 - F^2$ also bounds a disk in F^2. A 2-sphere is incompressible in M^3 if it does not bound a 3-cell in M^3. A 3-manifold M^3 is irreducible if every 2-sphere in M^3 bounds a 3-cell in M^3.

Two surfaces F^2_0 and F^2_1 in a 3-manifold M^3 are parallel in M^3 if there is an embedding $\alpha: F^2_0 \times [0, 1] \to M^3$ such that $\alpha_0: F^2_0 \to M^3$ is the inclusion map, and $\alpha_1: F^2_0 \to M^3$ takes F^2_0 homeomorphically onto F^2_1. If F^2_1, \ldots, F^2_n are disjoint surfaces in a 3-manifold M^3, and if L^3 is the closure of a complementary domain of $M^3 - \bigcup_{i=1}^n F^2_i$, then L^3 is a parallelity component if, for some $1 \leq i \leq n$, there is a homeomorphism $h: F^2_i \times [0, 1] \to L^3$ such that $h_0: F^2_i \to L^3$ is the inclusion map, and $h_1: F^2_i \to L^3$ takes F^2_i homeomorphically onto F^2_j for some $1 \leq j \leq n, j \neq i$.

If C^3 is a 3-manifold, possibly with boundary, we define \hat{C}^3 to be the 3-manifold, possibly with boundary, obtained from C^3 by capping off each 2-sphere boundary component of C^3 with a 3-cell.

If B^3 is a 3-cell, and if B^3_1, \ldots, B^3_k are disjoint polyhedral 3-cells in $\text{Int } B^3$, then we call the manifold-with-boundary $B^3 - (\bigcup_{i=1}^k \text{Int } B^3_i)$ a punctured 3-cell.

Lemma A. If F^2 is an incompressible surface in the product $M^2 \times [0, 1]$, where M^2 is a compact 2-manifold, then F^2 is parallel to $M^2 \times \{0\}$ and $M^2 \times \{1\}$.

This lemma is stated and proved by Haken on pp. 91–96 of [5].

Lemma B. If C^3 is a 3-manifold, possibly with boundary, and \hat{C}^3 is irreducible, then the finiteness theorem holds for C^3. In other words, there is an integer $n = n(C^3)$ such that if F^2_1, \ldots, F^2_{n+1} are $n+1$ disjoint incompressible polyhedral surfaces in C^3, then two of these surfaces are parallel.

Proof. We have assumed the finiteness theorem for irreducible 3-manifolds, so there is an integer $n(\hat{C}^3)$ such that if there are more than $n(\hat{C}^3)$ disjoint incompressible surfaces in \hat{C}^3, then two of them are parallel. There are disjoint 3-cells B^3_1, \ldots, B^3_k such that $C^3 = C^3 - \bigcup_{i=1}^k \text{Int } B^3_i$. Let $n = n(C^3) = n(\hat{C}^3) + 2k$. Let F^2_1, \ldots, F^2_{n+1} be $n+1$ disjoint incompressible surfaces in C^3. Then $n-k+1$ of these surfaces are irreducible in \hat{C}^3. There are $k+1$ distinct pairs from F^2_1, \ldots, F^2_{n+1} which are parallel in \hat{C}^3. (We say that the pair (F^2_i, F^2_j) is distinct from the pair...
THEOREM C. Let M^3 be a compact 3-manifold, possibly with boundary. Then there is an integer $n_0 = n(M^3)$ such that if F_1, \ldots, F_{n_0+1} are n_0+1 disjoint polyhedral-incompressible surfaces in M^3, then two of these surfaces are parallel.

Proof. Let $\Sigma = \{S_1^2, \ldots, S_k^2\}$ be a disjoint collection of 2-spheres in M^3. Let N_1^3, \ldots, N_k^3 be disjoint regular neighborhoods of S_1^2, \ldots, S_k^2 respectively. Let C_1^3, \ldots, C_k^3 be the components of $\text{Cl}(M^3 - \bigcup_{i=1}^k N_i^3)$. (The C_i^3's are determined up to homeomorphism by the S_i^2's and do not depend on the choice of the N_i^3's. Note that k may not equal l since some of the S_i^2's may not separate M^3.) We will call Σ a complete system of 2-spheres in M^3 if C_1^3, \ldots, C_k^3 are each irreducible.

We will let $n(M^3, \Sigma) = \sum_{i=1}^k n(C_i^3)$ where $n(C_i^3) = n(C_i^3)$ is defined in Lemma B.

Kneser's Theorem [7] shows that there is a complete system Σ_0 of 2-spheres in M^3. We will assume Σ_0 is a fixed complete system and we will let $n_0 = n(M^3, \Sigma_0)$.

Let $F_1^2, \ldots, F_{n_0+1}^2$ be disjoint incompressible surfaces in M^3. Let $F^2 = \bigcup_{i=1}^{n_0+1} F_i^2$. Suppose $\Sigma = \{S_1^2, \ldots, S_k^2\}$ is a complete system of 2-spheres in M^3, each of which is in general position with respect to F^2, and suppose that $n(M^3, \Sigma) = n_0$. Let $m(M^3, \Sigma, F^2)$ be the number of components of $(\bigcup_{i=1}^k S_i^2) \cap F^2$. (Each of these components is a simple closed curve.) We can suppose $m(M^3, \Sigma, F^2)$ is minimal over all such complete systems of 2-spheres in M^3. Theorem C will be proved if $m(M^3, \Sigma, F^2)$ is zero. For then there will be more than $n(C_i^3)$ of the surfaces $F_1^2, \ldots, F_{n_0+1}^2$ in one of the components C_i^3, and two of these surfaces must be parallel in C_i^3 by Lemma B. (Let N_1^3, \ldots, N_k^3 and C_1^3, \ldots, C_k^3 be defined as before.)

So we suppose that $m(M^3, \Sigma, F^2) > 0$. Any simple closed curve of $(\bigcup_{i=1}^k S_i^2) \cap F^2$ must bound a disk in F^2, since F^2 is incompressible. Therefore, we can choose an "innermost" (on F^2) simple closed curve J of $(\bigcup_{i=1}^k S_i^2) \cap F^2$; suppose $J \subset S_r^2 \cap F_r^2$ for some $r = 1, \ldots, l$ and $s = 1, \ldots, n_0+1$. Let D^2 be the disk that J bounds in F_r^2. Then D^2 is contained in some C_q^3 (where $q = 1, \ldots, k$) except for a regular neighborhood of ∂D^2.

Let E_1^2 and E_2^2 be the two disks bounded by J in S_r^2. We can push each of the 2-spheres $E_1^2 \cup D^2$ and $E_2^2 \cup D^2$ to one side so that they each miss D^2, and so that they are each contained in C_q^3. Then one of these 2-spheres must be in the boundary of a punctured cube P^3 in C_q^3 since C_q^3 is irreducible. Let S_i^2 be the 2-sphere that is not in the boundary of P^3, and let $\Sigma' = \{S_1^2, \ldots, S_{i-1}^2, S_{i+1}^2, \ldots, S_k^2\}$. We will show that Σ' is a complete system of 2-spheres in M^3, that $n(M^3, \Sigma') = n_0$, and that $m(M^3, \Sigma', F^2) < m(M^3, \Sigma, F^2)$.

Let $C_i^3 (i = 1, \ldots, k)$ be the component of $\text{Cl}(M^3 - \bigcup_{i=1}^k N_i^3)$ on the "other side" of S_i^2. (If S_i^2 does not separate M^3, then C_i^3 may equal C_i^3.) If we choose a small regular neighborhood N_i^3 of S_i^2 (so that $N_i^3 \cap D^2 = \emptyset$) and let $N_i^3 = N_i^3$ for

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
we can define \(C_i^0 \) and \(C_i^3 \) to be components of \(\text{Cl}(M^3 - \bigcup_{i=1}^n N_i^3) \). A subdisk \(D^2 \) of \(D^3 \) is a spanning disk of \(C_i^2 \) and if we remove the interior of a regular neighborhood of \(D^2 \), this separates \(C_i^2 \) into two components, one homeomorphic to \(C_i^0 \), and the other homeomorphic to the punctured cube \(P^3 \). Thus \(C_i^2 \) is homeomorphic to \(C_i^0 \). Furthermore, \(C_i^3 \) is homeomorphic to the manifold obtained by sewing \(P^3 \) to \(C_i^3 \) along a disk on the boundary of each. Thus \(C_i^3 \) is homeomorphic to \(C_i^0 \). We also have \(n(C_i^0) + n(C_i^0) = n(C_i^3) + n(C_i^3) \) since the 2-sphere boundary components of \(C_i^3 \cap P^3 \) which were removed from \(C_i^3 \) to obtain \(C_i^0 \) were added to \(C_i^0 \) to obtain \(C_i^3 \). Thus \(n(M^3, \Sigma^0) = n_0 \).

Since \(S^2 \cap D^2 = \emptyset \), \(m(M^3, \Sigma', F^2) < m(M^3, \Sigma, F^2) \), and this contradicts our assumption that \(m(M^3, \Sigma, F^2) \) was minimal.

Bibliography