Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Mappings from $ 3$-manifolds onto $ 3$-manifolds


Author: Alden Wright
Journal: Trans. Amer. Math. Soc. 167 (1972), 479-495
MSC: Primary 57A10
DOI: https://doi.org/10.1090/S0002-9947-1972-0339186-3
MathSciNet review: 0339186
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let f be a compact, boundary preserving mapping from the 3-manifold $ {M^3}$ onto the 3-manifold $ {N^3}$. Let $ {Z_p}$ denote the integers mod a prime p, or, if $ p = 0$, the integers. (1) If each point inverse of f is connected and strongly 1-acyclic over $ {Z_p}$, and if $ {M^3}$ is orientable for $ p > 2$, then all but a locally finite collection of point inverses of f are cellular. (2) If the image of the singular set of f is contained in a compact set each component of which is strongly acyclic over $ {Z_p}$, and if $ {M^3}$ is orientable for $ p \ne 2$, then $ {N^3}$ can be obtained from $ {M^3}$ by cutting out of $ \operatorname{Int} \;{M^3}$ a compact 3-manifold with 2-sphere boundary, and replacing it by a $ {Z_p}$-homology 3-cell. (3) If the singular set of f is contained in a 0-dimensional set, then all but a locally finite collection of point inverses of f are cellular.


References [Enhancements On Off] (What's this?)

  • [1] S. Armentrout, Concerning cellular decompositions of 3-manifolds with boundary, Trans. Amer. Math. Soc. 137 (1969), 231-236. MR 38 #5224. MR 0236931 (38:5224)
  • [2] R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. MR 15, 816. MR 0061377 (15:816d)
  • [3] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 22 #8470b. MR 0117695 (22:8470b)
  • [4] P. T. Church, Differentiable and monotone maps on manifolds. II, Trans. Amer. Math. Soc. 158 (1971), 493-503. MR 0278320 (43:4050)
  • [5] W. Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer., distributed by Prentice-Hall, Englewood Cliffs, N. J., 1968, pp. 39-98. MR 36 #7118. MR 0224071 (36:7118)
  • [6] H. Kneser, Geschlossen Flachen in dreidimensionalen Mannigfaltigkeiten, Jber. Deutsch. Math.-Verein. 38 (1929), 248-260.
  • [7] R. C. Lacher, Cellularity criteria for maps, Michigan Math. J. 17 (1970), 385-396. MR 0279818 (43:5539)
  • [8] R. C. Lacher and A. H. Wright, Mapping cylinders and 4-manifolds, Topology of Manifolds, Markham, Chicago, Ill., 1970. MR 0271951 (42:6832)
  • [9] H. W. Lambert, Replacing certain maps of 3-manifolds by homeomorphisms, Proc. Amer. Math. Soc. 23 (1969), 676-678. MR 41 #1058. MR 0256402 (41:1058)
  • [10] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience, New York, 1966. MR 34 #7617. MR 0207802 (34:7617)
  • [11] D. R. McMillan, Jr., Strong homotopy equivalence of 3-manifolds, Bull. Amer. Math. Soc. 73 (1967), 718-722. MR 37 #4817. MR 0229243 (37:4817)
  • [12] -, Compact acyclic subsets of three-manifolds, Michigan Math. J. 16 (1969), 129-136. MR 39 #4822. MR 0243501 (39:4822)
  • [13] -, Acyclicity in three-manifolds, Bull. Amer. Math. Soc. 76 (1970), 942-964. MR 0270380 (42:5269)
  • [14] J. W. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7. MR 25 #5518. MR 0142125 (25:5518)
  • [15] T. M. Price, A necessary condition that a cellular upper semicontinuous decomposition of $ {E^n}$ yield $ {E^n}$, Trans. Amer. Math. Soc. 122 (1966), 427-435. MR 33 #1843. MR 0193627 (33:1843)
  • [16] A. H. Wright, Monotone mappings of compact 3-manifolds, Ph.D. Thesis, University of Wisconsin, Madison, Wis., 1969.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A10

Retrieve articles in all journals with MSC: 57A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0339186-3
Keywords: Monotone mapping, 3-manifold, acyclic mapping, decomposition space, strongly acyclic
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society