Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A notion of capacity which characterizes removable singularities


Authors: Reese Harvey and John C. Polking
Journal: Trans. Amer. Math. Soc. 169 (1972), 183-195
MSC: Primary 35Q99; Secondary 31C15
DOI: https://doi.org/10.1090/S0002-9947-1972-0306740-4
MathSciNet review: 0306740
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the authors define a capacity for a given linear partial differential operator acting on a Banach space of distributions. This notion has as special cases Newtonian capacity, analytic capacity, and AC capacity. It is shown that the sets of capacity zero are precisely those sets which are removable sets for the corresponding homogeneous equation. Simple properties of the capacity are derived and special cases examined.


References [Enhancements On Off] (What's this?)

  • [1] D. Adams and J.C. Polking, The equivalence of two definitions of capacity (to appear). MR 0328109 (48:6451)
  • [2] L. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1-11. MR 9, 24. MR 0021108 (9:24a)
  • [3] D. G. Aronson, Removable singularities for linear parabolic equations, Arch. Rational Mech. Anal. 17 (1964), 79-84. MR 31 #1470. MR 0177206 (31:1470)
  • [4] L. Carleson, Selected problems on exceptional sets, Van Nostrand Math. Studies, no. 13, Van Nostrand, Princeton, N.J., 1967. MR 37 #1576. MR 0225986 (37:1576)
  • [5] E. B. Fabes and N. M. Riviere, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19-38. MR 35 #683. MR 0209787 (35:683)
  • [6] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219. MR 0097720 (20:4187)
  • [7] -, Applications du théorème minimax à l'étude diverse capacités, C. R. Acad. Sci. Paris 266 (1968), 921-923.
  • [8] P. R. Garabedian, Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc. 67 (1949), 1-35. MR 11, 340. MR 0032747 (11:340f)
  • [9] R. Harvey and J.C. Polking, Removable singularities of linear partial differential equations, Acta. Math. 125 (1970), 39-56. MR 0279461 (43:5183)
  • [10] L. Hörmander, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, New York, 1963. MR 28 #4221.
  • [11] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292. MR 0277741 (43:3474)
  • [12] J. C. Polking, Uniform approximation of nowhere dense sets by solutions of elliptic equations (in preparation).
  • [13] Ju. G. Rešetnjak, The concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Ž. 10 (1969), 1109-1138. (Russian) MR 0276487 (43:2234)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35Q99, 31C15

Retrieve articles in all journals with MSC: 35Q99, 31C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0306740-4
Keywords: Partial differential operators, capacity, removable singularities, capacitary potential, capacitary mass
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society