A NON-NOETHERIAN FACTORIAL RING(1)

BY

JOHN DAVID

ABSTRACT. This paper supplies a counterexample to the conjecture that factorial implies Noetherian in finite Krull dimension. The example is the integral closure of a three-dimensional Noetherian ring, and is the union of Noetherian domains, which are proven to be factorial by means of derivation techniques.

0. Introduction. This paper touches on the previously unexplored problem of when the factorial property implies the Noetherian property, in the category of commutative domains with unit.

Due to the abundant existence of non-Noetherian factorial rings in infinite Krull dimension, one restricts one’s attention to rings of finite Krull dimension. However, this paper shows that one must make distinctions even finer than that of Krull dimension, finite or infinite, to properly treat factorial implies Noetherian. That is, there is a non-Noetherian factorial ring in dimension three.

1. Notation. We will retain the following notation for the remainder of the paper.

(i) “Dimension” means Krull dimension.

(ii) K is a field of characteristic 2 such that $[K: K^2]$ is countably infinite.

(iii) $R^* = K[[x, y, z]]$, $R = K^2[[x, y, z]][K]$ where x, y, z are algebraically independent variables over K.

(iv) $d = \sum_{i=1}^{\infty} b_i y x^i + \sum_{i=1}^{\infty} c_i z x^i$.

For $N = 1, 2, \cdots$,

\[d_N = \sum_{i=0}^{\infty} b_{i+N} y x^i + \sum_{i=0}^{\infty} c_{i+N} z x^i, \quad e_N = \sum_{i=0}^{\infty} b_{i+N} x^i, \quad f_N = \sum_{i=0}^{\infty} c_{i+N} x^i. \]

For $N \neq 1$, $\alpha_N = \sum_{i=1}^{N-1} b_i y x^i + \sum_{i=1}^{N-1} c_i z x^i$, $\alpha_1 = 0$.

(v) $T = \text{the integral closure of } R[d]$ in its quotient field.

Received by the editors October 12, 1971.

Key words and phrases. Factorial, Krull dimension, Noetherian, derivation, integral closure.

(1) This work was done while the author was an NSF trainee. It will form part of his doctoral dissertation at the University of Rochester. He wishes to thank William Heinzer for his help.
496 JOHN DAVID [July

\[H_N = K^2[b_1, c_1, \ldots, b_{N-1}, c_{N-1}][x, y, z][e_N, f_N], \]
\[K_N = \text{the quotient field of } H_N, \]
\[l_N = K^2[b_1, c_1, \ldots, b_{N-1}, c_{N-1}][x, y, z][d_N], \]
\[L_N = \text{the quotient field of } l_N, \]
\[S_N = K^2[b_1, c_1, \ldots, b_{N-1}, c_{N-1}][x, y, z]. \]

2. Some theorems by M. Nagata and P. Samuel.

Theorem 1 (Nagata). \((R, (x, y, z))\) is a regular local Zariski ring, \(R^*\) the completion of \(R\) and \(a_{ijk} \in R\) iff \(\{a_{ijk}\}\) belongs to a finite field extension of \(K^2\).

Proof. See [1, p.206].

Theorem 2 (Nagata). \(T\) is a three Krull-dimensional, non-Noetherian local ring with maximal ideal \((x, y, z)\).

Proof. See [1, p.208].

Theorem 3 (Samuel). Let \(A\) be a UFD of characteristic \(p \neq 0\), \(L\) its quotient field, \(\Delta\) a derivation of \(L\) such that \(\Delta(A) \subseteq A\), \(L' = \text{Ker}(\Delta)\), and \(A'\) the Krull ring \(L' \cap A\). Define the logarithmic derivatives, \(D\), of \(\Delta\) relative to \(A\) as the additive subgroup of \(A\) consisting of elements of the form \(\Delta t/t\), \(t \in L\). The logarithmic derivatives of unity, \(D'\), are defined to be the subgroup of \(D\) consisting of those elements that can be written as \(\Delta u/u\) where \(u\) is a unit of \(A\). Then if \(D = D'\), \(A'\) is a UFD.

Proof. See [2, p.86].

Lemma A (Samuel). Let \(L\) be a field of characteristic \(p \neq 0\), \(\Delta\) a derivation of \(L\), \(L'\) the subfield \(\text{Ker}(\Delta)\). If \([L : L'] = p\), then there exists \(a \in L'\) such that \(\Delta^p = a\Delta\). \((\Delta^p\) is \(\Delta\) composed with itself \(p\) times.\)

Proof. See [2, p.87].

Lemma B (Samuel). With the same notation and hypotheses in the above theorem and lemma, so that an element \(t\) of \(A\) is a logarithmic derivative of \(\Delta\) with respect to \(A\), it is necessary and sufficient that \(\Delta^{p-1}(t) = at - t^p\).

Proof. See [2, p.88].

3. \(T\) is a Krull ring which is a union of an ascending chain of Noetherian three dimensional nonregular UFD's.

Proposition 1. \(T\) is a Krull ring.

Proof. This follows from 33.10 of [1], as \(R[d]\) is a Noetherian integral domain.
Lemma 2.1. $W = R[e_1, f_1, \ldots, e_k, f_k, \ldots]$ is normal.

Proof. Let $g \in W'$, the derived normal ring of W. Then there exist $p, q, r, s, t \in R$ such that $g = (p + qe_n + re_n + se_n + \frac{t}{n})/t$ for some n as $R[e_1, f_1, \ldots, e_k, f_k] = R[e_1, f_1]$ and the squares of elements of R^* lie in R. As the coefficients of the terms of p, q, r, s and t together generate a finite extension of K^2 and because

$$e_n = b_n + b_{n+1}x + \ldots + b_{m-1}x^{m-n-1} + x^{m-n}e_m, \quad m \geq n,$$

$$f_n = c_n + c_{n+1}x + \ldots + c_{m-1}x^{m-n-1} + x^{m-n}f_m, \quad m \geq n,$$

we get g contained in the derived normal ring of H_N for some N, as $g^2 \in K^2[[x, y, z]]$.

$g \in W$ follows from the next lemma and $H_N \subseteq W$.

Lemma 2.2. H_N is a regular local ring.

Proof. Since H_N is a finite module extension of $K^2[[x, y, z]]$, it is three dimensional local.

We thus need only show its maximal ideal, m, is (x, y, z). Since $H_N \subseteq R^*$, an element of H_N is a nonunit if it has subdegree ≥ 1. The converse is also true since it is true of $K^2[[x, y, z]]$, and the squares of elements of H_N lie in $K^2[[x, y, z]]$ and units of H_N are such iff their squares are. Now let $\alpha \in m$. Thus $\alpha^2 \in (x, y, z)K^2[[x, y, z]]$. Thus, as a power series in R^*, α must be of subdegree one or greater. Thus

$$\alpha = k_0 + k_1s_1 + k_2s_2 + \ldots + k_q s_q$$

where s_i are various products of b_i's, c_i's ($i < N$), e_N and f_N that are square-free, and $k_i \in K^2[[x, y, z]]$.

Since the zero degree forms of the s_i are linearly independent over K^2, the subdegree of α is ≥ 1 iff the subdegree of each of the k_i's are ≥ 1, iff $k_i \in (x, y, z)K^2[[x, y, z]]$.

We conclude $m = (x, y, z)H_N$.

Lemma 2.3. $1, e_N, f_N, \frac{e_N}{f_N}$ are linearly independent over the quotient field of R.

Proof. It suffices to check independence over R. Let $r_i \in R$ such that

$$(*) \quad r_1 + r_2 e_N + r_3 f_N + r_4 \frac{e_N}{f_N} = 0.$$

There exists $M > 0$ such that $r_i \in S_M \forall i$. Let $Q = \max \{N, M\}$. Then

$$e_N = b_N + b_{N+1}x + \ldots + b_{Q-1}x^{Q-N-1} + x^{Q-N}e_Q,$$

$$f_N = c_N + c_{N+1}x + \ldots + c_{Q-1}x^{Q-N-1} + x^{Q-N}f_Q.$$
Substituting these two equations into (\(*\)), we have a relation of the form

\[r_1' + r_2'e_Q + r_3' + r_4'e_Q = 0 \quad (r_i' \in S_Q). \]

By the linear independency of the leading forms of 1, \(e_Q, /Q, e_Q'/Q \) over \(S_Q \), \(r_i' = 0 \) for all \(i \). Then by the nature of these \(r_i' \), we see that \(r_4' = 0 \), hence \(r_2 = r_3 = 0 \). We conclude \(r_i' = 0 \ \forall i \). End of lemma.

Lemma 2.4. \(R[d_1, \ldots, d_k, \ldots] = \{(v_1 + v_2d)/x^l \mid v_i \in R, \ l \geq 0 \} \cap R^* \).

Proof. If \((v_1 + v_2d)/x^l = r^* \in R^* \) where \(v_i \in R \) and \(l \geq 1 \) then \(x^l r^* - v_2 d x^l = v_1 + \alpha \rho_2 \). It follows since \(R \) is normal and \(R^* \) is integral over \(R \) that

\[v_1 + v_2 \alpha = x^l \cdot v \quad \text{where} \quad v \in R. \]

Thus we get \(r^* = v + v_2d/x \in R[d_1, d_2, \ldots, d_k, \ldots] \).

If \(b \in R[d_1, d_2, \ldots, d_k, \ldots] \) then \(b \in R^* \) and \(\exists k \) such that \(b \in R[d_k] \) as \(R[d_1, d_2, \ldots, d_p] = R[d_p] \). Thus \(b = v_1 + v_2d_k, v_i \in R \). Thus

\[b = [(x^k v_1 + v_2 \alpha_k) + v_2 d]/x^k. \]

Thus \(b \in \{(v_1 + v_2d)/x^l \mid v_i \in R, \ l \geq 0 \} \cap R^* \). End of lemma.

Proposition 2. \(R[d_1, d_2, \ldots, d_k, \ldots] = T \).

Proof.

\(\subseteq \): \(T \) normal, and \(R^* \) integrally closed and integral over \(R \) imply \(R^* \cap \) quotient field \(R[d] = T \). Since \(d_N = (d + \alpha_N)/x^N, \ N = 1, 2, \ldots, d_N \in R^* \cap \) quotient field \(R[d] \). Thus \(d_N \in T \).

\(\supseteq \): Let \(b \in T \). By Lemma 2.1, \(\exists k \) such that \(b \in R[e_1, /_1, \ldots, e_k, /_k] \). Thus \(\exists N \) such that \(x^N b \in R[e_1, /_1] \). So \(x^N b = a_0 + a_1 e_1 + a_2 /_1 + a_3 e_1 /_1 \) where \(a_i \in R \). Also \(x^N a = a + a'd \) where \(a, a' \in \) the quotient field of \(R \). Thus by Lemma 2.3,

\[a = a_0, \ a'yx = a_1, \ a'zx = a_2 \quad \text{and} \quad 0 = a_3. \]

By Theorem 1, \(R \) is a UFD so we can write \(a' = w_1 /w_2, \ (w_1, w_2) = 1; w_i \in R \). Then \(y \) and \(z \) being distinct primes of \(R \) allow us to conclude from \((*) \) that \(w_2 \) divides \(x \) in \(R \). Thus

\[x^{N+1} b = x a_0 + (x w_2^{-1})w_1 d \in R[d]. \]

Thus by Lemma 2.4, \(b \in R[d_1, \ldots, d_k, \ldots] \). End of Proposition 2.

Let \(N > 1 \); we are to prove that \(l_N \) is a UFD. But first some lemmas.

Lemma 3.1. \(H_N \) is a UFD.
Proof. Follows from Lemma 2.2.

Lemma 3.2. \([K_N : L_N] = 2\).

Proof. \(f_N \in L_N[e_N] \) and \(H_N = L_N[f_N, e_N] \) implies \(L_N[e_N] = K_N\). Thus \(e_N\) being square integral over \(L_N\) implies \([K_N : L_N] = 2\), as \(K_N \not\subseteq L_N\).

Thus \(\{e_N\}\) is a 2-base for \(K_N\) over \(L_N\). Define the following \(L_N\)-derivation of \(K_N\): \(A(e_N) = zf_N\).

Lemma 3.3. \(\text{Ker}(\Delta) = L_N\) and \(\Delta(H_N) \subseteq H_N\).

Proof. \(K_N \supseteq \text{Ker}(\Delta) \supseteq L_N\) and Lemma 3.2 imply \(\text{Ker}(\Delta) = L_N\). \(\Delta(H_N) \subseteq H_N\) is easily verified by checking the action of \(\Delta\) on \(f_N\) and \(e_Nf_N\).

Lemma 3.4. \(I_N\) is integrally closed.

Proof. Let \(b \in \text{integral closure of } I_N\). By Lemma 3.1, \(b \in H_N\), so
\[
b = t_1 + t_2e_N + t_3f_N + t_4e_Nf_N, \quad t_i \in S_N.
\]
Since \(b \in L_N\),
\[
b = a + a'd_N, \quad a, a' \in \text{the quotient field of } S_N.
\]
By Lemma 2.3, \(t_1 = a, t_2 = ya', t_3 = za', t_4 = 0\). Letting \(a' = w/v, \) where \(w, v \in S_N\), we have \(t_2v = wy\) and \(t_3v = wz\). Since \(S_N\) is a UFD in which \(y\) and \(z\) are relatively prime, we get \(v\) divides \(w\) in \(S_N\). Thus \(b = t_1 + a'd_N, \) \(t_1, a' \in S_N\). Thus \(b \in I_N\) and \(I_N\) is integrally closed.

Lemma 3.5. \(\text{Ker}(\Delta) \cap H_N = I_N\).

Proof. Follows from Lemmas 3.3, 3.4 and \(H_N\) being integral over \(I_N\).

Lemma 3.6. \(\Delta^2 = y\Delta\).

Proof. Follows from an easy calculation; see Lemma A.

From here on \(D\) denotes the logarithmic derivatives of \(H_N\) with respect to \(\Delta\). \(D'\) denotes the logarithmic derivatives of unity of \(H_N\) with respect to \(\Delta\). (See Theorem 3.)

Lemma 3.7. Let \(t \in D\). Then if \(t\) is a unit of \(H_N\), \(t \in D'\).

Proof. By Lemmas B, 3.1, 3.2 and 3.6, \(\Delta t = t^2 + yt\). As \(y \in \text{Ker}\Delta\), \(\Delta(t + y)/(t + y) = t\). As \(t + y\) is a unit of \(H_N\), \(t \in D'\).

Lemma 3.8. \((D \cap (z, y)H_N) \cup (D \cap \text{Units}(H_N)) = D\).

Proof. Let \(b \in D\). We shall show if \(b \notin \text{Units}(H_N)\), then \(b \in (z, y)H_N\).
Assume then that \(b \in D \setminus \text{Units}(H_N)\). Then
\[
b = v_1 + v_2e_N + v_3f_N + v_4e_Nf_N, \quad v_i \in S_N.
\]
As in Lemma 3.7, \(\Delta(b) = yb + b^2 \). This is equivalent to, by Lemma 2.3,

\[
(*) \quad v_4 z f_N^2 + yv_1 = v_2 + v_2 f_N^2 + v_4^2 e_N f_N^2, \quad v_2 = 0.
\]

By an easy reasoning, none of the \(v_i \) are regular in \(x \). Also, as \(b \) is a nonunit in \(H_N \), it is a nonunit in \(R^* \). This follows from \(q \in R^* \implies q^2 \in H_N \). Thus we conclude \(v_i \in (z, y)R^* \).

We finally conclude \(b \in (Z, Y)H_N \) by the following

Lemma 3.8.1. \((z, y)R^* \cap S_N \subseteq (z, y)S_N \).

Proof. Let \(\alpha \in (z, y)R^* \cap S_N \). Then as \(S_N \) is a power series ring, \(\alpha \in (z, y)S_N \).

Lemma 3.9. \(D' \supseteq D \cap (z, y)H_N \).

Proof. Let \(Q = \{(v, w)\} \), \(v, w \in H_N \) and \(vz + wy \in D \cap (z, y)H_N \). Define \(\gamma, \alpha, \beta : Q \rightarrow H_N \), as follows:

Let \((r', s') \in Q \) and let \(t = r' z + s' y \). Then

\[
t = r \Delta e_N + s \Delta f_N \quad \text{where} \quad r = r' / f_N, \quad s = s' / f_N.
\]

By Lemma B and the proof of Lemma 3.7, it follows that

\[
(\Delta r + r^2 \Delta e_N) \Delta e_N = (\Delta s + s^2 \Delta f_N) \Delta f_N.
\]

Since \(\Delta e_N, \Delta f_N \) are relatively prime in \(H_N \), a UFD by Lemma 3.1, \(\exists \) unique \(b \in H_N \) such that

\[
(1) \quad \Delta s = s^2 \Delta f_N + b \Delta e_N.
\]

By derivations of (1), using Lemma 3.6, one gets \(\Delta b \Delta f_N = 0 \), so \(\Delta b = 0 \).

Now let \(\beta((r', s')) = 1 + re_N + s f_N + (rs + b)e_N f_N \), and rewrite

\[
\beta((r', s')) = k_0 + k_1 e_N + k_2 f_N + k_3 e_N f_N, \quad k_i \in S_N.
\]

Also let

\[
r' = r_1 + r_2 e_N + r_3 f_N + r_4 e_N f_N,
\]

\[
s' = s_1 + s_2 e_N + s_3 f_N + s_4 e_N f_N, \quad r_i, s_i \in S_N
\]

and let \(r_i^0, s_i^0 \) be the constant terms of the power series \(r, s, \) respectively. Define \(\alpha((r', s')) \) to be the constant term of \(k_0 \). Thus \(\alpha((r', s')) = 1 + r_0 b^2 + s_0 + r_1 s_0 b^2 + r_2 s_0 b^2 + r_3 b^2 + r_4 b^2 \) (we have used Lemma 3.5 and that \(\Delta b = 0 \)) and define

\[
y((r', s')) = 1 + b^2 r_0^2.
\]

Now let \(t_0 \in D \cap (z, y)H_N \).\(t_0 = r' z + s' y \). One has

\[
\Delta \beta((r', s')) = \beta((r', s')) t_0.
\]
One would like to have $\beta((r', s'))$ a unit, for then $t_0 \in D'$, but this is not necessarily so. However, we have $\alpha((r', s')) \neq 0$ implies $\beta((r', s'))$ is a unit by the reasoning contained in Lemma 2.2. So suppose $\alpha((r', s')) = 0$.

Case I. Assume $y((r', s')) \neq 0$. Then $\alpha((r', s' + 1)) \neq 0$. So if $t' = rz + (s' + 1)y$ then $t' \in D \cap (Z, Y)H_N$ using Lemmas B and 3.6. So $\beta((r', s' + 1))$ is a unit. As $\Delta \beta((r', s' + 1)) = \beta((r', s' + 1))t'$, then

$$\Delta(\beta((r', s' + 1)) \cdot f_N) = \beta((r', s' + 1)) \cdot f_N \cdot t_0$$

and $\beta((r', s' + 1)) \cdot f_N$ is a unit. Thus $t_0 \in D'$.

Case II. Assume $y((r', s')) = 0$. Let $t' = (r' + e_Nf^2_N)/s'$. Then $t' \in D \cap (Z, Y)H_N$, using Lemmas B and 3.6. Note that as the constant term of $1/e_N^2$ is $1/b_N^2$, $y(r'/e_Nf^2_N/s') \neq 0$.

Thus since either $\alpha((r' + e_Nf^2_N/e_N^2, s')) \neq 0$ or, by Case I, \exists a unit $u \in H$ such that $\Delta u = ut'$, then $\Delta(e_Nu) = e_Nut_0$ and e_Nu is a unit. Thus $t_0 \in D'$. End of lemma.

Lemma 3.10. $D' = D$.

Proof. Follows from Lemmas 3.7, 3.8, 3.9.

Proposition 3. I_N is a UFD.

Proof. Follows from Theorem 3 and Lemmas 3.1, 3.3, 3.5 and 3.10.

Remark. In proving Lemma 3.9, some techniques of P. Samuel were used that are found in Lemma 3 of [3].

Proposition 4. T is a UFD.

Proof. In view of Proposition 1, we need only show the minimal primes of T are principal.

Let P denote a minimal prime of T. By Proposition 1, $\exists \alpha \in T$ such that $PTP = \alpha \cdot TP$. As $d_i \in I_j, \ i \leq j$, and $T = R[d_1, d_2, \ldots, d_k, \ldots]$ (Proposition 2), we see that $\exists M$ such that $\alpha \in I_M \subseteq T$. Since T is an integral extension of I_M, and by Lemma 3.4, $P' = P \cap I_M$ is a minimal prime of I_M. Thus, by Proposition 3, P' is principal. Let β generate P'. Since the squares of elements of T lie in I_M, no two primes can contract to the same prime in I_M. Thus β is not contained in any other minimal prime of T.

As $\alpha \in P'$, $\exists q \in T$ such that $\alpha = q \cdot \beta$. Thus $\beta \cdot TQ = PTQ$, for every minimal prime Q of T.

By the following lemma, β generates P.
Lemma 4.1. Let R be a Krull domain such that $\beta, \delta \in R$. Let β divide δ in $R_p \bigcap \text{minimal prime } P$. Then β divides δ in R.

Proof. As $(\beta R : \partial R)$ is divisorial, $(\beta R : \delta R) \cap R$ is such. As $(\beta R : \delta R) \cap R$ is integral, it must contain 1 or be contained in some height 1 prime. As the latter is not possible, $1 \in (\beta R : \partial R)$, Thus β divides δ in R. (See [3, pp. 1, 7].)

We are now able to state

Theorem. Let K be a field of characteristic two such that $[K : k^2]$ is countably infinite. Let $\{b_i, c_i\}_{i=1}^{\infty}$ be a two-base for K over K^2. Let $R = K^2[[x, y, z]][K]$,

$$d = \sum_{i=1}^{\infty} b_i x^i + c_i z^i.$$

Then $T = \text{the integral closure of } R[d]$ is a three dimensional non-Noetherian quasi-local factorial ring.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NEW YORK 14627