Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Lattice-ordered injective hulls


Author: Stuart A. Steinberg
Journal: Trans. Amer. Math. Soc. 169 (1972), 365-388
MSC: Primary 06A55
DOI: https://doi.org/10.1090/S0002-9947-1972-0313158-7
MathSciNet review: 0313158
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that the injective hull of a lattice-ordered group ($ l$-group) $ M$ can be given a lattice order in a unique way so that it becomes an $ l$-group extension of $ M$. This is not the case for an arbitrary $ f$-module over a partially ordered ring (po-ring). The fact that it is the case for any $ l$-group is used extensively to get deep theorems in the theory of $ l$-groups. For instance, it is used in the proof of the Hahn-embedding theorem and in the characterization of $ {\aleph _a}$-injective $ l$-groups.

In this paper we give a necessary and sufficient condition on the injective hull of a torsion-free $ f$-module $ M$ (over a directed essentially positive po-ring) for it to be made into an $ f$-module extension of $ M$ (in a unique way). An $ f$-module is called an $ i - f$-module if its injective hull can be made into an $ f$-module extension. The class of torsion-free $ i - f$-modules is closed under the formation of products, sums, and Hahn products of strict $ f$-modules. Also, an $ l$-submodule and a torsion-free homomorphic image of a torsion-free $ i - f$-module are $ i - f$-modules.

Let $ R$ be an $ f$-ring with zero right singular ideal whose Boolean algebra of polars is atomic. We show that $ R$ is a $ qf$-ring (i.e., $ {R_R}$ is an $ i - f$-module) if and only if each torsion-free $ R - f$-module is an $ i - f$-module. There are no injectives in the category of torsion-free $ R - f$-modules, but there are $ {\aleph _a}$-injectives. These may be characterized as the $ f$-modules that are injective $ R$-modules and $ {\aleph _a}$-injective $ l$-groups. In addition, each torsion-free $ f$-module over $ R$ can be embedded in a Hahn product of $ l$-simple $ Q(R) - f$-modules. We note, too, that a totally ordered domain has an $ i - f$-module if and only if it is a right Ore domain.


References [Enhancements On Off] (What's this?)

  • [1] F. W. Anderson, Lattice-ordered rings of quotients, Canad. J. Math. 17 (1965), 434-448. MR 30 #4801. MR 0174600 (30:4801)
  • [2] G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41-69. MR 18, 191. MR 0080099 (18:191d)
  • [3] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [4] P. F. Conrad, Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212-240. MR 22 #12143. MR 0121405 (22:12143)
  • [5] -, The lattice of all convex $ l$-subgroups of a lattice-ordered group, Czechoslovak Math. J. 15 (90) (1965), 101-123. MR 30 #3926. MR 0173716 (30:3926)
  • [6] P. F. Conrad and J. E. Diem, The ring of polar preserving endomorphisms of an abelian lattice-ordered group, Illinois J. Math. 15 (1971), 222-240. MR 0285462 (44:2680)
  • [7] P. F. Conrad, J. Harvey and C. Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc. 108 (1963), 143-169. MR 27 #1519. MR 0151534 (27:1519)
  • [8] J. E. Diem, A radical for lattice-ordered rings, Pacific J. Math. 25 (1968), 71-82. MR 37 #2653. MR 0227068 (37:2653)
  • [9] B. Eckmann and A. Schopf, Über injektive Moduln, Arch. Math. (Hochschild) 4 (1953), 75-78. MR 15, 5. MR 0055978 (15:5d)
  • [10] C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Math., no. 49, Springer-Verlag, New York, 1967. MR 37 #2791. MR 0227206 (37:2791)
  • [11] L. Fuchs, Teilweise geordnete algebraische Strukturen, Vandenhoeck and Ruprecht in Gottingen, 1966. MR 34 #4386. MR 0204547 (34:4386)
  • [12] A. W. Goldie, Rings with maximum condition, Lecture Notes, Yale University, New Haven, Conn., 1964.
  • [13] -, Torsion-free modules and rings, J. Algebra 1 (1964), 268-287. MR 29 #2282. MR 0164991 (29:2282)
  • [14] P. Jaffard, Les systèmes d'idéaux, Travaux et Recherches Mathématiques, 4, Dunod, Paris, 1960. MR 22 #5628. MR 0114810 (22:5628)
  • [15] D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163-215. MR 23 #A2447. MR 0125141 (23:A2447)
  • [16] D. G. Johnson and J. Kist, Prime ideals in vector lattices, Canad. J. Math. 14 (1962), 517-528. MR 25 #2010. MR 0138566 (25:2010)
  • [17] R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895. MR 13, 618. MR 0045695 (13:618c)
  • [18] L. Levy, Unique subdirect sums of prime rings, Trans. Amer. Math. Soc. 106 (1963), 64-76. MR 26 #136. MR 0142567 (26:136)
  • [19] P. Ribenboim, On ordered modules, J. Reine Angew. Math. 225 (1967), 120-146. MR 34 #5877. MR 0206052 (34:5877)
  • [20] S. A. Steinberg, Finitely-valued $ f$-modules, Pacific J. Math. (to appear). MR 0306078 (46:5205)
  • [21] -, Lattice-ordered rings and modules, Dissertation, University of Illinois, Urbana, Ill., 1970.
  • [22] Y. Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1-18. MR 18, 7. MR 0078966 (18:7c)
  • [23] Diana Yun-dee Wei, On the concept of torsion and divisibility for general rings, Illinois J. Math. 13 (1969), 414-431. MR 9, 280. MR 0241467 (39:2807)
  • [24] E. C. Weinberg, Lectures on ordered groups and rings, Lecture Notes, University of Illinois, Urbana, Ill., 1968.
  • [25] -, Relative injectives and universals for categories of ordered structures, Trans. Amer. Math. Soc. (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A55

Retrieve articles in all journals with MSC: 06A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0313158-7
Keywords: $ f$-module, lattice-ordered injective hull, relative injectives, torsion-free $ f$-module, Hahn embedding theorem
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society