Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Plurisubharmonic functions and convexity properties for general function algebras


Author: C. E. Rickart
Journal: Trans. Amer. Math. Soc. 169 (1972), 1-24
MSC: Primary 46J10; Secondary 32F05, 46G20
DOI: https://doi.org/10.1090/S0002-9947-1972-0317055-2
MathSciNet review: 0317055
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A ``natural system'' consists of a Hausdorff space $ \Sigma $ plus an algebra $ \mathfrak{A}$ of complex-valued continuous functions on $ \Sigma $ (which contains the constants and determines the topology in $ \Sigma $) such that every continuous homomorphism of $ \mathfrak{A}$ onto $ {\mathbf{C}}$ is given by an evaluation at a point of $ \Sigma $ (compact-open topology in $ \mathfrak{A}$). The prototype of a natural system is $ [{{\mathbf{C}}^n},\mathfrak{P}]$, where $ \mathfrak{P}$ is the algebra of polynomials on $ {{\mathbf{C}}^n}$. In earlier papers (Pacific J. Math. 18 and Canad. J. Math. 20), the author studied $ \mathfrak{A}$-holomorphic functions, which are generalizations of ordinary holomorphic functions in $ {{\mathbf{C}}^n}$, and associated concepts of $ \mathfrak{A}$-analytic variety and $ \mathfrak{A}$-holomorphic convexity in $ \Sigma $. In the present paper, a class of extended real-valued functions, called $ \mathfrak{A}$-subharmonic functions, is introduced which generalizes the ordinary plurisubharmonic functions in $ {{\mathbf{C}}^n}$. These functions enjoy many of the properties associated with plurisubharmonic functions. Furthermore, in terms of the $ \mathfrak{A}$-subharmonic functions, a number of convexity properties of $ {{\mathbf{C}}^n}$ associated with plurisubharmonic functions can be generalized. For example, if $ G$ is an open $ \mathfrak{A}$-holomorphically convex subset of $ \Sigma $ and $ K$ is a compact subset of $ G$, then the convex hull of $ K$ with respect to the continuous $ \mathfrak{A}$-subharmonic functions on $ G$ is equal to its hull with respect to the $ \mathfrak{A}$-holomorphic functions on $ G$.


References [Enhancements On Off] (What's this?)

  • [1] S. Bochner and W. T. Martin, Several complex variables, Princeton Math. Series, vol. 10, Princeton Univ. Press, Princeton, N. J., 1948. MR 10, 366. MR 0027863 (10:366a)
  • [2] H.-J. Bremermann, On the conjecture of the equaivalence of the plurisubharmonic functions and the Hartogs functions, Math. Ann. 131 (1956), 76-86. MR 17, 1070. MR 0077644 (17:1070h)
  • [3] B. A. Fuks, Special chapters in the theory of analytic functions of several complex variables, Fizmatgiz, Moscow, 1963; English transl., Transl. Math. Monographs, vol. 14, Amer. Math. Soc., Providence, R.I., 1965. MR 30 #4979; MR 32 #5915. MR 0174786 (30:4979)
  • [4] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1965. MR 31 #4927. MR 0180696 (31:4927)
  • [5] F. Hausdorff, Mengenlehre, de Gruyter, Berlin, 1937; English transl., Set theory, Chelsea, New York, 1957. MR 19, 111.
  • [6] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966. MR 34 #2933. MR 0203075 (34:2933)
  • [7] P. Lelong, Les fonctions plurisousharmoniques, Ann. Sci. École Norm. Sup. (3) 62 (1945), 301-338. MR 8, 271. MR 0018304 (8:271f)
  • [8] -, Fonctions plurisousharmoniques et formes différentielles positives, Gordon and Breach, New York, 1968. MR 39 #4436. MR 0243112 (39:4436)
  • [9] C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [10] -, Analytic phenomena in general function algebras, Pacific J. Math. 18 (1966), 361-377. MR 33 #6438. MR 0198279 (33:6438)
  • [11] -, Holomorphic convexity for general function algebras, Canad. J. Math. 20 (1968), 272-290. MR 37 #3362. MR 0227778 (37:3362)
  • [12] -, Analytic functions of an infinite number of complex variables, Duke Math. J. 36 (1969), 581-597. MR 40 #7819. MR 0254611 (40:7819)
  • [13] H. Rossi, The local maximum modulus principle, Ann. of Math. (2) 72 (1960), 1-11. MR 22 #8317. MR 0117539 (22:8317)
  • [14] G. Stolzenberg, A hull with no analytic structure, J. Math. Mech. 12 (1963), 103-111. MR 26 #627. MR 0143061 (26:627)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46J10, 32F05, 46G20

Retrieve articles in all journals with MSC: 46J10, 32F05, 46G20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0317055-2
Keywords: Plurisubharmonic functions, $ p$-convexity, several complex variables, function algebras, natural systems
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society