Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Torsion differentials and deformation


Author: D. S. Rim
Journal: Trans. Amer. Math. Soc. 169 (1972), 257-278
MSC: Primary 14B10; Secondary 14D15, 14M10
DOI: https://doi.org/10.1090/S0002-9947-1972-0342513-4
MathSciNet review: 0342513
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$-scheme $ X$ be a Schlessinger deformation of a curve $ {X_0}$ defined over a field $ k$. In §§1 and 2, the dimension of the parameter space $ S$, the relative differentials of $ X$ over $ S$, and the fibres with singularity were studied, in case when $ {X_0}$ is locally complete-intersection. In §3 we show that if $ k$-scheme $ {X_0}$ is a specialization of a smooth $ k$-scheme, then the punctured spectrum $ \operatorname{Spex} ({O_{{X_{0,x}}}})$ has to be connected for every point $ x \in {X_0}$ such that $ \dim {O_{{X_{0,x}}}} \geqslant 2$. In turn we construct a rigid singularity on a surface. In the last section a few conjectures amplifying those of P. Deligne are made.


References [Enhancements On Off] (What's this?)

  • [1] M. André, Méthode simpliciale en algèbre homologique et algèbre commutative, Lecture Notes in Math., vol. 32, Springer-Verlag, New York, 1967. MR 35 #5493. MR 0214644 (35:5493)
  • [2] D. A. Buchsbaum and D. S. Rim, A generalized Koszul complex. II: Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197-224. MR 28 #3076. MR 0159860 (28:3076)
  • [3] P. Deligne, Intersections sur les surfaces régulières, Séminaire de Géométrie Algébrique, vol. 7, Institut des Hautes Études Scientifique, Paris, 1969.
  • [4] H. Grauert and H. Kerner, Deformationen von Singularitäten komplexer Räume, Math. Ann. 153 (1964), 236-260. MR 30 #592. MR 0170354 (30:592)
  • [5] A. Grothendieck, Géométrie formelle et géométrie algébrique, Séminaire Bourbaki, 1958/59, Fasc. 3, exposé 182, Secrétariat mathématique, Paris, 1959.
  • [6] -, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, (SGA 2) Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Math., vol. 2, North-Holland, 1968.
  • [7] R. Hartshorne, Residues and duality, Lecture Notes in Math., no. 20, Springer-Verlag, New York, 1966. MR 36 #5145. MR 0222093 (36:5145)
  • [8] D. S. Rim, On formal moduli of deformations, Séminaire de Géométrie Algébrique, vol. 7 (to appear).
  • [9] -, Deformations of ordinary multiple points (to appear).
  • [10] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. MR 36 #184. MR 0217093 (36:184)
  • [11] Anonymous, Correspondence, Amer. J. Math. 79 (1957), 951-952. MR 0123574 (23:A899)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14B10, 14D15, 14M10

Retrieve articles in all journals with MSC: 14B10, 14D15, 14M10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0342513-4
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society