Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Norm of a derivation on a von Neumann algebra


Author: P. Gajendragadkar
Journal: Trans. Amer. Math. Soc. 170 (1972), 165-170
MSC: Primary 46L10
DOI: https://doi.org/10.1090/S0002-9947-1972-0305090-X
MathSciNet review: 0305090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A derivation on an algebra $ \mathfrak{A}$ is a linear function $ \mathcal{D}:\mathfrak{A} \to \mathfrak{A}$ satisfying $ \mathcal{D}(ab) = \mathcal{D}(a)b + a\mathcal{D}(b)$ for all $ a,b$ in $ \mathfrak{A}$. If there exists an $ a$ in $ \mathfrak{A}$ such that $ \mathcal{D}(b) = ab - ba$ for $ b$ in $ \mathfrak{A}$, then $ \mathcal{D}$ is called the inner derivation induced by $ a$. If $ \mathfrak{A}$ is a von Neumann algebra, then by a theorem of Sakai [7], every derivation on $ \mathfrak{A}$ is inner. In this paper we compute the norm of a derivation on a von Neumann algebra. Specifically we prove that if $ \mathfrak{A}$ is a von Neumann algebra acting on a separable Hilbert space $ \mathcal{H},T$ is in $ \mathfrak{A}$, and $ {\mathcal{D}_T}$ is the derivation induced by $ T$, then $ \vert\vert{\mathcal{D}_T}\vert\mathfrak{A}\vert\vert = 2\inf \{ \vert\vert T - Z\vert\vert,Z\;{\text{in}}\;{\text{centre}}\;\mathfrak{A}\} $.


References [Enhancements On Off] (What's this?)

  • [1] J. Diximier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
  • [2] R. V. Kadison, Unitary invariants for representations of operator algebras, Ann. of Math. (2) 66 (1957), 304-379. MR 19, 665. MR 0089378 (19:665e)
  • [3] -, Derivations of operator algebras, Ann. of Math. (2) 83 (1966), 280-293. MR 33 #1747. MR 0193527 (33:1747)
  • [4] R. V. Kadison, E. C. Lance and J. R. Ringrose, Derivations and automorphisms of operator algebras. II, J. Functional Analysis 1 (1967), 204-221. MR 35 #5954. MR 0215111 (35:5954)
  • [5] R. V. Kadison and J. R. Ringrose, Derivations and automorphisms of operator algebras, Comm. Math. Phys. 4 (1967), 32-63. MR 34 #6552. MR 0206735 (34:6552)
  • [6] M. A. Naĭmark and S. V. Fomin, Continuous direct sums of Hilbert spaces and some of their applications, Uspehi Mat. Nauk 10 (1955), no. 2 (64), 111-143; English transl., Amer. Math. Soc. Transl. (2) 5 (1957), 35-65. MR 17, 65; MR 18, 748. MR 0070985 (17:65e)
  • [7] S. Sakai, Derivations of $ {W^ \ast }$-algebras, Ann. of Math. (2) 83 (1966), 273-279. MR 33 #1748. MR 0193528 (33:1748)
  • [8] J. G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970), 737-747. MR 42 #861. MR 0265952 (42:861)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L10

Retrieve articles in all journals with MSC: 46L10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0305090-X
Keywords: Centre of a bounded operator, decomposition of a Hilbert space into a direct integral, norm of a derivation, separable, von Neumann algebra
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society