Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Approximating embeddings of polyhedra in codimension three


Author: J. L. Bryant
Journal: Trans. Amer. Math. Soc. 170 (1972), 85-95
MSC: Primary 57C35; Secondary 57C55
DOI: https://doi.org/10.1090/S0002-9947-1972-0307245-7
MathSciNet review: 0307245
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P$ be a $ p$-dimensional polyhedron and let $ Q$ be a PL $ q$-manifold without boundary. (Neither is necessarily compact.) The purpose of this paper is to prove that, if $ q - p \geqslant 3$, then any topological embedding of $ P$ into $ Q$ can be pointwise approximated by PL embeddings. The proof of this theorem uses the analogous result for embeddings of one PL manifold into another obtained by Černavskiĭ and Miller.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Radial engulfing, Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), Prindle, Weber and Schmidt, Boston, Mass., 1968, pp. 1-18. MR 38 #6560. MR 0238284 (38:6560)
  • [2] H. W. Berkowitz, Piecewise linear approximations of homeomorphisms (preprint).
  • [3] J. L. Bryant and C. L. Seebeck III, Locally nice embeddings of polyhedra, Quart. J. Math. Oxford Ser. (2) 19 (1968), 257-274. MR 38 #2751. MR 0234434 (38:2751)
  • [4] J. C. Cantrell, $ n$-frames in euclidean $ k$-space, Proc. Amer. Math. Soc. 15 (1964), 574-578. MR 29 #1627. MR 0164330 (29:1627)
  • [5] A. V. Černavskiĭ, Topological embeddings of manifolds, Dokl. Akad. Nauk SSSR 187 (1969), 1247-1250 = Soviet Math. Dokl. 10 (1969), 1037-1040. MR 41 #4547. MR 0259918 (41:4547)
  • [6] -, Piecewise linear approximations of embeddings of cells and spheres in codimensions higher than two, Mat. Sb. 80 (122) (1969), 339-364 = Math. USSR Sb. 9 (1969), 321-344. MR 40 #4957. MR 0251730 (40:4957)
  • [7] J. I. Cobb, Taming almost PL embeddings, Notices Amer. Math. Soc. 15 (1968), 371. Abstract #68T-241.
  • [8] R. Connelly, Unknotting close embeddings of polyhedra in codimension greater than two, Ph. D. Dissertation, University of Michigan, Ann Arbor, Mich., 1969.
  • [9] R. D. Edwards, The equivalence of close piecewise-linear embeddings (to appear). MR 0370603 (51:6830)
  • [10] R. J. Miller, Approximating codimension three embeddings, Ann. of Math. (to appear).
  • [11] C. L. Seebeck III, Collaring an $ (n - 1)$-manifold in an $ n$-manifold, Trans. Amer. Math. Soc. 148 (1970), 63-68. MR 41 #2692. MR 0258045 (41:2692)
  • [12] A. Scott, Infinite regular neighbourhoods, J. London Math. Soc. 42 (1967), 245-253. MR 35 #3672. MR 0212807 (35:3672)
  • [13] C. Weber, Plongements de polyèdres dans le domaine métastable, Comment Math. Helv. 42 (1967), 1-27. MR 38 #6606. MR 0238330 (38:6606)
  • [14] P. Wright, Radial engulfing in codimension three, Duke Math. J. 38 (1971), 295-298. MR 0281214 (43:6933)
  • [15] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501-526. MR 28 #3432. MR 0160218 (28:3432)
  • [16] -, Seminar on combinatorial topology, Inst. Hautes Études Sci., Paris, 1963 (mimeograph notes).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57C35, 57C55

Retrieve articles in all journals with MSC: 57C35, 57C55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0307245-7
Keywords: PL embedding, PL mapping, PL approximation, polyhedron, PL manifold
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society