Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Knaster's conjecture


Author: R. P. Jerrard
Journal: Trans. Amer. Math. Soc. 170 (1972), 385-402
MSC: Primary 55C20; Secondary 54H25
DOI: https://doi.org/10.1090/S0002-9947-1972-0309101-7
MathSciNet review: 0309101
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Knaster's conjecture is: given a continuous $ g:{S^n} \to {E^m}$ and a set $ \Delta $ of $ n - m + 2$ distinct points $ ({q_1}, \ldots ,{q_{n - m + 2}})$ in $ {S^n}$ there exists a rotation $ r:{S^n} \to {S^n}$ such that

$\displaystyle g(r({q_1})) = g(r({q_2})) = \cdots = g(r({q_{n - m + 2}})).$

We prove a stronger statement about a smaller class of functions. If $ f:{S^n} \to {E^n}$ we write $ f = ({f_1},{f_2}, \ldots ,{f_n})$ where $ {f_i}:{S^n} \to {E^1}$, and put $ {F_i} = ({f_1}, \ldots ,{f_i}):{S^n} \to {E^i}$ so that $ {F_n} = f$. The level surface of $ {F_i}$ in $ {S^n}$ containing $ x$ is $ {l_i}(x) = \{ y \in {S^n}\vert{F_i}(x) = {F_i}(y)\} $.

Theorem. Given an $ (n + 1)$-frame $ \Delta \subset {S^n}$ and a real-analytic function $ f:{S^n} \to {E^n}$ such that each $ {l_i}(x)$ is either a point or a topological $ (n - i)$-sphere, there exist at least $ {2^{n - 1}}$ distinct rotations $ r:{S^n} \to {S^n}$ such that

$\displaystyle {f_i}(r({q_1})) = \cdots = {f_i}(r({q_{n - i + 2}})),\quad i = 1,2, \ldots ,n,$

for each rotation. It follows that for $ m = 1,2, \ldots ,n$,

$\displaystyle {F_m}(r({q_1})) = {F_m}(r({q_2})) = \cdots = {F_m}(r({q_{n - m + 2}})),$

so that the functions $ {F_m}:{S^n} \to {E^m}$ satisfy Knaster's conjecture simultaneously.

Given $ {F_i}$, the definition of $ f$ can be completed in many ways by choosing $ {f_{i + 1}}, \cdots ,{f_n}$, each way giving rise to different rotations satisfying the Theorem. A suitable homotopy of $ f$ which changes $ {f_n}$ slightly will give locally a continuum of rotations $ r$ each of which satisfies Knaster's conjecture for $ {F_{n - 1}}$. In general there exists an $ (n - m)$-dimensional family of rotations satisfying Knaster's conjecture for $ {F_m}$.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk, Drei Sätze über die $ n$-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177.
  • [2] D. G. Bourgin, On some separation and mapping theorems, Comment. Math. Helv. 29 (1955), 199-214. MR 17, 289. MR 0072469 (17:289d)
  • [3] -, Multiplicity of solutions in frame mappings, Illinois J. Math. 9 (1965), 169-177. MR 34 #3572. MR 0203723 (34:3572)
  • [4] S. S. Cairns, Circumscribed cubes in euclidean $ n$-space, Bull. Amer. Math. Soc. 65 (1959), 327-328. MR 22 #985. MR 0110102 (22:985)
  • [5] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750. MR 0176478 (31:750)
  • [6] F. J. Dyson, Continuous functions defined on spheres, Ann. of Math. (2) 54 (1951), 534-536. MR 13, 450. MR 0044620 (13:450f)
  • [7] E. E. Floyd, Real-valued mappings of spheres, Proc. Amer. Math. Soc. 6 (1955), 957-959. MR 17, 518. MR 0073978 (17:518b)
  • [8] M. A. Geraghty, Applications of Smith index to some covering and frame theorems, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 219-228. MR 23 #A1364. MR 0124044 (23:A1364)
  • [9] H. Hopf, Eine Verallgemeinerung bekannter Abbildungs- und Überdeckungssätze, Portugal. Math. 4 (1944), 129-139. MR 6, 165. MR 0011438 (6:165c)
  • [10] R. P. Jerrard, Inscribed squares in plane curves, Trans. Amer. Math. Soc. 98 (1961), 234-241. MR 22 #11354. MR 0120604 (22:11354)
  • [11] S. Kakutani, A proof that there exists a circumscribing cube around any bounded closed convex set in $ {R^3}$, Ann. of Math. (2) 43 (1942), 739-741. MR 4, 111. MR 0007267 (4:111i)
  • [12] B. Knaster, Problem 4, Colloq. Math. 1 (1947), 30.
  • [13] G. R. Livesay, On a theorem of F. J. Dyson, Ann. of Math. (2) 59 (1954), 227-229. MR 15, 548. MR 0059546 (15:548a)
  • [14] H. Yamabe and Z. Yujobô, On the continuous function defined on a sphere, Osaka Math. J. 2 (1950), 19-22. MR 12, 198. MR 0037006 (12:198c)
  • [15] C.-T. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson. I, II, Ann. of Math. (2) 60 (1954), 262-282; ibid. (2) 62 (1955), 271-283. MR 16, 502; MR 17, 289. MR 0065910 (16:502d)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55C20, 54H25

Retrieve articles in all journals with MSC: 55C20, 54H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0309101-7
Keywords: Knaster's conjecture, sphere maps, coincidence theorems, set-valued functions
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society