Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Extreme limits of compacta valued functions


Author: T. F. Bridgland
Journal: Trans. Amer. Math. Soc. 170 (1972), 149-163
MSC: Primary 54C60; Secondary 28A45
DOI: https://doi.org/10.1090/S0002-9947-1972-0362209-2
MathSciNet review: 0362209
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ denote a topological space and $ \Omega (X)$ the space of all nonvoid closed subsets of $ X$. Recent developments in analysis, especially in control theory, have rested upon the properties of the space $ \Omega (X)$ where $ X$ is assumed to be metric but not necessarily compact and with $ \Omega (X)$ topologized by the Hausdorff metric. For a continuation of these developments, it is essential that definitions of extreme limits of sequences in $ \Omega (X)$ be formulated in such a way that the induced limit is topologized by the Hausdorff metric. It is the purpose of this paper to present the formulation of such a definition and to examine some of the ramifications thereof. In particular, we give several theorems which embody ``estimates of Fatou'' for integrals of set valued functions.


References [Enhancements On Off] (What's this?)

  • [1] K. Kuratowski, Topology. Vol. 1, Academic Press, New York; PWN, Warsaw, 1966. MR 36 #839. MR 0217751 (36:840)
  • [2] -, Topology. Vol. 2, Academic Press, New York; PWN, Warsaw, 1968. MR 41 #4467.
  • [3] C. Berge, Topological spaces, Macmillan, New York, 1963.
  • [4] T. F. Bridgland, Jr., Contributions to the theory of generalized differential equations. I, Math. Systems Theory 3 (1969), 17-50. MR 40 #3018.
  • [5] -, Contributions to the theory of generalized differential equations. II, Math. Systems Theory 3 (1969), 156-165. MR 40 #3018. MR 0249777 (40:3018)
  • [6] -, Trajectory integrals of set valued functions, Pacific J. Math. 33 (1970), 43-68. MR 41 #7061. MR 0262454 (41:7061)
  • [7] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. MR 32 #2543. MR 0185073 (32:2543)
  • [8] J. Dieudonné, Foundations of modern analysis, Pure and Appl. Math., vol. 10, Academic Press, New York, 1960. MR 22 #11074. MR 0120319 (22:11074)
  • [9] N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302. MR 0117523 (22:8302)
  • [10] F. A. Valentine, Convex sets, McGraw-Hill Series in Higher Math., McGraw-Hill, New York, 1964. MR 30 #503. MR 0170264 (30:503)
  • [11] C. Castaing, Sur les équations différentielles multivoques, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A63-A66. MR 34 #397. MR 0200506 (34:397)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54C60, 28A45

Retrieve articles in all journals with MSC: 54C60, 28A45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0362209-2
Keywords: Set valued functions, trajectory integral, control theory, multivalued functions, compacta valued functions, generalized differential equations
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society