ERRATUM TO "SUBORDINATION PRINCIPLE AND DISTORTION THEOREMS ON HOLOMORPHIC MAPPINGS IN THE SPACE C^n"

BY

KYONG T. HAHN

1. Matrix inequalities (1) and (4) on p. 330 of [1] should be replaced by the following determinant inequalities:

\[|J_\phi(t)|^2 = |\text{det}(\partial \phi / \partial t)|^2 \leq 1, \]
\[|J_f(t)|^2 \leq |J_F(t)|^2, \]

respectively. The second paragraph of Theorem 2 [1, p. 330] including inequality (5) may now be deleted. The proof of Lemma 2 can be repaired by substituting the second half of the proof beginning from the line right below inequality (3) by the following:

Thus, $AA^* \leq aM^2 I_n$, where $A = (\partial \phi / \partial z)_t$. Since $\phi(t) = t$, it holds that $A^k A^{*k} \leq aM^2 I_n$ for every positive integer k. Let μ_1, \ldots, μ_n be the characteristic roots of A. There exists a unitary matrix U such that $A = U \Gamma U^*$, where

\[\Gamma = \begin{pmatrix} \mu_1 & \ast \\ \vdots & \ddots \\ 0 & \ast & \mu_n \end{pmatrix} \]

is an upper triangular matrix. Since

\[\Gamma^k = \begin{pmatrix} \mu_1^k & \ast \\ \vdots & \ddots \\ 0 & \ast & \mu_n^k \end{pmatrix}, \]

we have $\Gamma^k \Gamma^{*k} \leq aM^2 I_n$. Thus, for each k, $|\mu_j|^{2k} \leq aM^2$ which implies $|\mu_j| \leq 1$. So $|J_\phi(t)|^2 \leq 1$.

2. In the statements of Theorem 6, p. 334, and Corollary 3, p. 335, "$f \in \mathcal{S}(D)$" and "$f \in \mathcal{S}(0)$" should be replaced by "f is a biholomorphic mapping on D" and "f is a biholomorphic mapping on R_V", respectively.

3. Inequalities (11), (14) and (15) should be replaced by

\[|J_f(z)| \leq (d_w / r_0(D))^n[T_D(z, \bar{z})/T_D(0, 0)]^{1/2} = (d_w / r_0(D))^n |J_f(0)|^{-1}, \]
In the proof of Theorem 6, the function $g(z)$ should be defined by

$$g(z) = (f(z) - f(t)) / [J_f(t)]^{1/n};$$

proceeding as in [1] we obtain corrected formulas (11'), (14') and (15').

4. (3.14) on line 5, p. 334, should be replaced by (3.1).

REFERENCE