Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Hochschild homology of complete intersections


Author: Klaus Wolffhardt
Journal: Trans. Amer. Math. Soc. 171 (1972), 51-66
MSC: Primary 13J05; Secondary 18H15
DOI: https://doi.org/10.1090/S0002-9947-1972-0306192-4
MathSciNet review: 0306192
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \tilde{R}$ be the algebra of all convergent (or of all strictly convergent) power series in $ N$ variables over a commutative field $ K$ of characteristic 0 with a valuation, e.g. $ \tilde{R} = K[{X_1}, \cdots ,{X_N}]$. With each $ K$-algebra $ R \cong \tilde{R}/\mathfrak{a}$ we associate a bigraded $ R$-algebra $ E$. By the powers of $ \mathfrak{a}$ a filtration of the Poincaré complex of $ \tilde{R}$ is induced, and $ E$ is the first term of the corresponding spectral sequence. If $ \mathfrak{a}$ is generated by a prime sequence in $ \tilde{R},R$ is called a complete intersection, and $ E$--with an appropriate simple grading--is isomorphic to the Hochschild homology of $ R$. The result is applied to hypersurfaces.


References [Enhancements On Off] (What's this?)

  • [1] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton ton, N. J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [2] R. Berger, R. Kiehl, E. Kunz and H.-J. Nastold, Differentialrechnung in der analytischen Geometrie, Lecture Notes in Math., no. 38, Springer-Verlag, Berlin and New York, 1967. MR 37 #469. MR 0224870 (37:469)
  • [3] G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383-408. MR 26 #167. MR 0142598 (26:167)
  • [4] A. Micali, Sur ses algèbres universelles, Ann. Inst. Fourier (Grenoble) 14 (1964), fasc. 2, 33-87. MR 31 #1275. MR 0177009 (31:1275)
  • [5] G. S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222. MR 27 #4850. MR 0154906 (27:4850)
  • [6] J.-P. Serre, Algèbre locale. Multiplicités, Cours au Collège de France, 1957/58, Lecture Notes in Math., no. 11, Springer-Verlag, Berlin and New York, 1965. MR 34 #1352.
  • [7] U. Vetter, Äussere Potenzen von Differentialmoduln reduzierter vollständiger Durchschnitte, Manuscripta Math. 2 (1970), 67-75. MR 42 #255. MR 0265345 (42:255)
  • [8] K. Wolffhardt, Zur Homologietheorie der assoziativen Algebren, Manuscripta Math. 4 (1971), 149-168. MR 0286787 (44:3996)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13J05, 18H15

Retrieve articles in all journals with MSC: 13J05, 18H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0306192-4
Keywords: Hochschild homology, analytic algebra, affinoid algebra, affine algebra, formal differentials, complete intersection, hypersurface
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society