Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The tangential Cauchy-Riemann complex on spheres


Author: G. B. Folland
Journal: Trans. Amer. Math. Soc. 171 (1972), 83-133
MSC: Primary 43A75; Secondary 35N15, 58G05
DOI: https://doi.org/10.1090/S0002-9947-1972-0309156-X
MathSciNet review: 0309156
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper investigates the $ {\overline \partial _b}$ complex of Kohn and Rossi on the unit sphere in complex $ n$-space (considered as the boundary of the unit ball). The methods are Fourier-analytic, exploiting the fact that the unitary group $ U(n)$ acts homogeneously on the complex. We decompose the spaces of sections into irreducible components under the action of $ U(n)$ and compute the action of $ {\overline \partial _b}$ on each irreducible piece. We then display the connection between the $ {\overline \partial _b}$ complex and the Dolbeault complexes of certain line bundles on complex projective space. Precise global regularity theorems for $ {\overline \partial _b}$ are proved, including a Sobolev-type estimate for norms related to $ {\overline \partial _b}$. Finally, we solve the $ \overline \partial $-Neumann problem on the unit ball and obtain a proof by explicit calculations of the noncoercive nature of this problem.


References [Enhancements On Off] (What's this?)

  • [1] H. Boerner, Representations of groups, 2nd ed., American Elsevier, New York, 1970. MR 0272911 (42:7792)
  • [2] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022. MR 0069338 (16:1022b)
  • [3] N. Dunford and J. T. Schwartz, Linear operators. II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181. MR 0188745 (32:6181)
  • [4] F. Hirzebruch, Topological methods in algebraic geometry, 3rd ed., Die Grundlehren der math. Wissenschaften, Band 131, Springer-Verlag, New York, 1966. MR 34 #2573. MR 0202713 (34:2573)
  • [5] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43-76. MR 22 #5991. MR 0115189 (22:5991)
  • [6] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds, I, II, Ann. of Math. (2) 78 (1963), 112-148; ibid. 79 (1964), 450-472. MR 27 #2999; MR 34 #8010. MR 0153030 (27:2999)
  • [7] -, Boundaries of complex manifolds, Proc. Conference Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, pp. 81-94. MR 30 #5334. MR 0175149 (30:5334)
  • [8] J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443-492. MR 31 #6041. MR 0181815 (31:6041)
  • [9] J. J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451-472. MR 31 #1399. MR 0177135 (31:1399)
  • [10] H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64 (1956), 514-522. MR 18, 473. MR 0081952 (18:473b)
  • [11] -, An example of a smooth linear partial differential equation without solution, Ann. of Math. (2) 66 (1957), 155-158. MR 19, 551. MR 0088629 (19:551d)
  • [12] C. N. Moore, The summability of the developments in Bessel functions, with applications, Trans. Amer. Math. Soc. 10 (1909), 391-435. MR 1500847
  • [13] C. Müller, Spherical harmonics, Lecture Notes in Math., no. 17, Springer-Verlag, New York, 1966. MR 33 #7593. MR 0199449 (33:7593)
  • [14] E. M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1970. MR 40 #6176. MR 0252961 (40:6176)
  • [15] W. J. Sweeney, The $ D$-Neumann problem, Acta Math. 120 (1968), 233-277. MR 37 #2250. MR 0226662 (37:2250)
  • [16] F. Trèves, On local solvability of linear partial differential equations, Bull. Amer. Math. Soc. 76 (1970), 552-571. MR 41 #2200. MR 0257550 (41:2200)
  • [17] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press Press, Cambridge,; Macmillan, New York, 1944. MR 6, 64. MR 0010746 (6:64a)
  • [18] A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualités Sci. Indust., no. 869, Hermann, Paris, 1940. MR 3, 198. MR 0005741 (3:198b)
  • [19] H. Weyl, The classical groups, 2nd ed., Princeton Univ. Press, Princeton, N. J., 1946. MR 1488158 (98k:01049)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A75, 35N15, 58G05

Retrieve articles in all journals with MSC: 43A75, 35N15, 58G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0309156-X
Keywords: Tangential Cauchy-Riemann operators, subelliptic operators, transversally elliptic operators, representations of $ U(n)$, spherical harmonics, Sobolev estimates, $ \overline \partial $-Neumann problem, Bessel functions
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society