Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Boundary links and an unlinking theorem


Author: M. A. Gutiérrez
Journal: Trans. Amer. Math. Soc. 171 (1972), 491-499
MSC: Primary 57C45; Secondary 55A25
DOI: https://doi.org/10.1090/S0002-9947-1972-0310902-X
MathSciNet review: 0310902
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a homotopic theoretic criterion for a higher dimensional link to be trivial.


References [Enhancements On Off] (What's this?)

  • [1] S. Cappell, Thesis, Princeton University, Princeton N. J., 1970.
  • [2] M. W. Hirsch, Embeddings and compressions of polyhedra and smooth manifolds, Topology 4 (1966), 361-369. MR 32 #6478. MR 0189051 (32:6478)
  • [3] S. T. Hu, Homotopy theory, Pure and Appl. Math., vol. 8, Academic Press, New York, 1959. MR 21 #5186. MR 0106454 (21:5186)
  • [4] M. A. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 32 #6479. MR 0189052 (32:6479)
  • [5] R. Lee, Unlinking spheres in codimension two, Princeton University, Princeton, N. J., 1969. (mimeographed notes).
  • [6] J. Levine, Imbedding and isotopy of spheres in manifolds, Proc. Cambridge Philos. Soc. 60 (1964), 433-437. MR 35 #2292. MR 0211411 (35:2292)
  • [7] -, Unknotting spheres in codimension two, Topology 4 (1965), 9-16. MR 31 #4045. MR 0179803 (31:4045)
  • [8] -, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554. MR 34 #808. MR 0200922 (34:808)
  • [9] -, Knot cobordism groups in codimension two, Comment. Math Helv. 44 (1969), 229-244. MR 39 #7618. MR 0246314 (39:7618)
  • [10] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1969. MR 34 #7617.
  • [11] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122. MR 0349792 (50:2285)
  • [12] J. Milnor, Lectures on the $ h$-cobordism theorem, Princeton Univ. Press, Princeton, N. J., 1965. MR 32 #8352. MR 0190942 (32:8352)
  • [13] L. Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N. J., 1965. MR 31 #734. MR 0176462 (31:734)
  • [14] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294. MR 15, 548. MR 0059548 (15:548c)
  • [15] J. Shaneson, Embeddings with codimension two and $ h$-cobordisms of $ {S^1} \times {S^3}$, Bull. Amer. Math. Soc. 74 (1968), 972-974. MR 37 #5887. MR 0230325 (37:5887)
  • [16] N. Smythe, Boundary links, Wisconsin Topology Seminar, Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1965. MR 34 #1974.
  • [17] . N. Smythe and R. Holmes, Algebraic invariants of isotopy of links, Amer. J. Math. 88 (1966), 646-654. MR 34 #807. MR 0200921 (34:807)
  • [18] J. Stallings, Homology and lower central series of groups, J. Algebra 2 (1965), 170-181. MR 31 #232. MR 0175956 (31:232)
  • [19] R. Thom, Quelques propriétés globales des varietés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 15, 890. MR 0061823 (15:890a)
  • [20] E. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. MR 33 #3290. MR 0195085 (33:3290)
  • [21] A. Haefliger, Differentiable links, Topology 1 (1962), 241-244. MR 26 #5585. MR 0148076 (26:5585)
  • [22] V. Poénaru, A note on the generators for the fundamental group of the complement of a submanifold of codimension two, Topology 10 (1971); 47-52. MR 0271978 (42:6859)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57C45, 55A25

Retrieve articles in all journals with MSC: 57C45, 55A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0310902-X
Keywords: Boundary $ m$-link, lower central series of a group, Seifert manifolds
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society