Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Symmetrization of distributions and its application. II. Liouville type problem in convolution equations


Author: Kuang-ho Chen
Journal: Trans. Amer. Math. Soc. 171 (1972), 179-194
MSC: Primary 46F10; Secondary 35G05, 47B99
DOI: https://doi.org/10.1090/S0002-9947-1972-0630201-6
MathSciNet review: 0630201
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The symmetrization of distributions corresponding to a bounded $ n - 1$ dimensional $ {C^\infty }$-submanifold of a $ {C^\infty }$-manifold is constructed. This device reduces the consideration of distributions in $ {R^n}$ to the one of distributions in $ {R^1}$, i.e. the symmetrized distributions. Using the relation between the inverse Fourier transform of a symmetrized distribution and the one of the original (nonsymmetrized) distribution, we determine the rate of decay at infinity of solutions to a general convolution equation necessary to assure uniqueness. Using a result in the division problem for distributions, we achieve the following result: If $ u \in C({R^n})$ is a solution of the convolution equation $ S \ast u = f,f \in \mathcal{D}({R^n})$, with some suitable $ S \in \mathcal{E}'({R^n})$, then $ u \in \mathcal{D}({R^n})$, provided $ u$ decays sufficiently fast at infinity.


References [Enhancements On Off] (What's this?)

  • [1] A. S. Besicovitch, Almost periodic functions, Cambridge Univ. Press, New York, 1932.
  • [2] Salomon Bochner and W. T. Martin, Several complex variables, Princeton Math. Series, vol. 10, Princeton Univ. Press, Princeton, N. J., 1948. MR 10, 366. MR 0027863 (10:366a)
  • [3] Kuang-Ho Chen, Symmetrization of distributions and its application, Trans. Amer. Math. Soc. 162 (1971) , 455-471. MR 0415308 (54:3397)
  • [4] Leon Ehrenpreis, Solution of some problems of division. I. Divisions by a polynomial of derivation, Amer. J. Math. 76 (1954), 883-903. MR 16, 834. MR 0068123 (16:834a)
  • [5] -, Solution of some problems of division. II. Division by a polynomial of derivation, Amer. J. Math. 77 (1955), 286-292. MR 16, 1123. MR 0070048 (16:1123a)
  • [6] -, Solutions of some problems of division. III. Division in the spaces $ \mathcal{D}',\mathcal{K}$, Amer. J. Math. 78 (1956), 685-715. MR 18, 746. MR 0083690 (18:746g)
  • [7] -, Solutions of some problems of division. IV. Invertible and elliptic operators, Amer. J. Math. 82 (1960), 522-588. MR 22 #9848. MR 0119082 (22:9848)
  • [8] -, Solutions of some problems of division. V. Hyperbolic operators, Amer. J. Math. 84 (1962), 324-348. MR 26 #480. MR 0142913 (26:480)
  • [9] Avner Friedman, Generalized functions and partial differential equations, PrenticeHall, Englewood Cliffs, N. J., 1963. MR 29 #2672. MR 0165388 (29:2672)
  • [10] -, Entire solutions of partial differential equations with constant coefficients, Duke Math. J. 31 (1964), 235-240. MR 28 #5255. MR 0162053 (28:5255)
  • [11] I. M. Gel'fand and G. E. Šilov, Generalized functions. Vol. 1: Operations on them, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1964. MR 20 #4182; MR 29 #3869.
  • [12] -, Generalized functions. Vol. 2: Spaces of fundamental functions, Fizmatgiz, Moscow, 1958; English transl., Academic Press; Gordon and Breach, New York, 1968. MR 21 #5142a; MR 37 #5693.
  • [13] -, Generalized functions. Vol. 3: Some questions in the theory of differential equations, Fizmatgiz, Moscow, 1958; English transl., Academic Press, New York, 1967. MR 21 #5142b; MR 36 #506. MR 0435833 (55:8786c)
  • [14] V. V. Grušin, On Sommerfeld-type conditions for a certain class of partial differential equations, Mat. Sb. 61 (103) (1963), 147-174; English transl., Amer. Math. Soc. Transl. (2) 51 (1966), 82-112. MR 28 #346. MR 0157106 (28:346)
  • [15] Lars Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 22 #12389. MR 0121655 (22:12389)
  • [16] -, Hypoelliptic convolution equations, Math. Scand. 9 (1961), 178-184. MR 25 #3265. MR 0139838 (25:3265)
  • [17] -, On the range of convolution operators, Ann. of Math. (2) 76 (1962), 148-170. MR 25 #5379. MR 0141984 (25:5379)
  • [18] -, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #4221.
  • [19] Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770. MR 27 #5086. MR 0155146 (27:5086)
  • [20] -, Decay at infinity of solutions to partial differential equations with constant coefficients, Trans. Amer. Math. Soc. 123 (1966), 449-459. MR 33 #6110. MR 0197951 (33:6110)
  • [21] -, Maximal rates of decay of solutions of partial differential equations, Arch. Rational Mech. Anal. 37 (1970), 11-20. MR 41 #2197. MR 0257547 (41:2197)
  • [22] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Thesis, Paris, 1955; Ann. Inst. Fourier (Grenoble) 6 (1955/56), 271-355. MR 19, 280. MR 0086990 (19:280a)
  • [23] L. Schwartz, Théorie des distributions. Tome I, Actualités Sci. Indust., no. 1091, Hermann, Paris, 1950. MR 12, 31. MR 0035918 (12:31d)
  • [24] -, Théorie des distributions. Tome II, Actualités Sci. Indust., no. 1022, Hermann, Paris, 1951. MR 12, 833. MR 0041345 (12:833d)
  • [25] J. F. Tréves, Lectures on linear partial differential equations with constant coefficients, Notas de Matemática, no. 27, Instituto de Matemática Pura e Aplicada do Conselho Nacional de Pesquisas, Rio de Janeiro, 1961. MR 27 #5020. MR 0155078 (27:5020)
  • [26] -, Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions, Math, and its Appl., vol. 6, Gordon and Breach, New York, 1966. MR 37 #557. MR 0224958 (37:557)
  • [27] -, Differential polynomials and decay at infinity, Bull. Amer. Math. Soc. 66 (1960), 184-186. MR 22 #8227. MR 0117448 (22:8227)
  • [28] M. I. Višik and G. I. Eskin, Convolution equations in a bounded region, Uspehi Mat. Nauk 20 (1965), no. 3 (123), 89-152 = Russian Math. Surveys 20 (1965), no. 3, 8 5-151. MR 32 #2741. MR 0185273 (32:2741)
  • [29] -, Convolution equations in a bounded region in spaces with weighted norms, Mat. Sb. 69 (111) (1966), 65-110; English transl., Amer. Math. Soc. Transl. (2) 67 (1968), 33-82. MR 36 #1935. MR 0218851 (36:1935)
  • [30] Z. Zieleźny, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions. I, Studia Math. 28 (1966/67), 317-332. MR 36 #5528. MR 0222476 (36:5528)
  • [31] -, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions. II, Studia Math. 32 (1969), 47-59. MR 40 #1773. MR 0248521 (40:1773)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46F10, 35G05, 47B99

Retrieve articles in all journals with MSC: 46F10, 35G05, 47B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0630201-6
Keywords: Symmetrization of distributions corresponding to a manifold in distribution (or function) sense, convolution equation, Liouville type problem, $ {C^\infty }$-diffeomorphism, division problem
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society