Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The access theorem for subharmonic functions


Authors: R. Hornblower and E. S. Thomas
Journal: Trans. Amer. Math. Soc. 172 (1972), 287-297
MSC: Primary 31A20
DOI: https://doi.org/10.1090/S0002-9947-1972-0308420-8
MathSciNet review: 0308420
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A chain from a point $ {z_0}$ of the open unit disk $ \Delta $ to the boundary of $ \Delta $ is a set $ \Gamma = \cup \{ {\gamma _n}\vert n = 0,1,2, \cdots \} $ where the $ {\gamma _n}$ are compact, connected subsets of $ \Delta ,{z_0}$ is in $ {\gamma _0},{\gamma _n}$ meets $ {\gamma _{n + 1}}$ and the $ {\gamma _n}$ approach the boundary of $ \Delta $. The following ``Access Theorem'' is proved: If $ u$ is subharmonic in $ \Delta ,{z_0}$ is a point of $ \Delta $ and $ M < u({z_0})$, then there is a chain from $ {z_0}$ to the boundary of $ \Delta $ on which $ u \geq M$ and on which $ u$ tends to a limit. A refinement, in which the chain is a polygonal arc, is established, and an example is constructed to show that the theorem fails if $ M = u({z_0})$ even for bounded, continuous subharmonic functions.


References [Enhancements On Off] (What's this?)

  • [1] M. Brelot, Étude des fonctions sous-harmoniques au voisinage d'un point singulier, Ann. Inst. Fourier Grenoble 1 (1949), 121-156. MR 12, 258. MR 0037416 (12:258e)
  • [2] W. K. Hayman, On the characteristic of functions meromorphic in the unit disk and of their integrals, Acta Math. 112 (1964), 181-214. MR 29 #6019. MR 0168763 (29:6019)
  • [3] Maurice Heins, Seclected topics in the classical theory of functions of a complex variable, Athena Series: Selected Topics in Math., Holt, Rinehart and Winston, New York, 1962. MR 29 #217. MR 0162913 (29:217)
  • [4] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857. MR 0125557 (23:A2857)
  • [5] R. Hornblower, Subharmonic analogues of MacLane's classes, Ann. Polon. Math. (to appear). MR 0364642 (51:896)
  • [6] G. R. MacLane, Asymptotic values of holomorphic functions, Rice Univ. Studies 49 (1963), no. 1, 83 pp. MR 26 #6419. MR 0148923 (26:6419)
  • [7] M. N. M. Talpur, Thesis, London, 1967.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31A20

Retrieve articles in all journals with MSC: 31A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0308420-8
Keywords: Subharmonic function, harmonic function, Mac Lane classes, Milloux-Schmidt inequality, conformal map
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society