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ASYMPTOTIC BEHAVIOR OF TRANSFORMS OF DISTRIBUTION J)
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ABSTRACT. In this paper final and initial value type Abelian theorems for

Laplace and Fourier transforms of certain types of distributions are obtained.

The class of distributions under consideration contains the singular distribu-

tions. Thus we generalize the results previously obtained by A. H. Zemanian

in two ways: we add Fourier transforms to these considered, and we also deal

with a larger class of distributions.

1.   Introduction.  Some classical Abelian theorems provide the initial

motivation.   Such theorems relate a singularity of a function at zero to the rate

at which its transform tends to zero at infinity (initial value type) or relate the

rate at which a function tends to zero at infinity to a singularity of its transform

at zero (final value type).   It turns out that, roughly speaking, transforms of

distributions are better behaved at zero and worse behaved at infinity than are

the transforms of functions.

Let  T be a Laplace transformable distribution with support in   [0, oo)  such

that  T  is regular (defined by a function /) in  [0, a] or  [a, oo) for some  a > 0.

Such distributions will be called semiregular.   Also, let i-[ ] denote the appro-

priate Laplace transform of the function or distribution within the brackets.

A. H. Zemanian   [7, Chapter 8]  showed that Abelian theorems relating the

behavior of / to the behavior of X.[f] imply Abelian theorems relating the

behavior of / to that of ¿.[T].   We will now obtain results of the final and initial

value type for both the Laplace transform and the Fourier transform of distributions

which are not necessarily semiregular.

The final value type Abelian theorem for a semiregular distribution  T is

obtained in the following way.    T can be written as   T = 17 + V where   17  is of

compact support and  V = Tf.   Then £[T] = £[(7] + £[V] and ¿[T]  is a function

of one variable, say  a.   X.[U]  is a function which can be extended to an entire

_
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function, and S.[V]  is identical to £[/].   In Zemanian's example,  fix) ~ KyXa

(a< 1) as  x —» oo  implies  £[/](ff)~ K2aa~X  as  a —+ 0  ,  and since £[(i]  is

bounded at the origin this contribution from £[v]  is the dominant one in the be-

havior of Jl[T] as  a —» 0   ,  giving an Abelian theorem for distributions.

The method of investigating the behavior of the transforms of singular

distributions is based on representation theorems for the distributions.   For the

Laplace transform the basic idea is to take a Laplace transformable distribution

T with support in  [0, oo) and write it as  T = U + V where   U is of compact

support and e~cxV is tempered, for some real c.   For the Fourier transform the

decomposition is similar except the support is not necessarily restricted to

[0, oo):   Take a tempered distribution  T  and write it as   T = U + S + V where  S

is of compact support  [ - a — e, b + 8] and   U and   V ate tempered, having support

in ( - oo, - a ] and  [b, oo), respectively, for positive numbers  a and  b.   Then

for both transforms representations of these components of the original distribu-

tions are used.   Tempered distributions are represented as distributional deriv-

atives of tempered functions, that is, functions of the form  (1 + x  ) g(x) for any

x where g  is bounded and continuous.   Distributions of compact support are

represented as sums of distributional derivatives of Radon measures.   Then the

assumed behavior of the tempered functions or of the Radon measures is reflected

in the asymptotic behavior of the transforms.   A distributional derivative of order

/,  for some nonnegative integer  /,  contributes the factor   Ka   (K = 1  or  i

depending on the transform) to the asymptotic behavior of the transform.

2.   Notation and definitions.   The evaluation of a distribution   T at a test

function  cp will be denoted by   \T, cp).   All integrals are Lebesgue   integrals and

/ e BV(Ù) will mean the function  / is of bounded variation over the set  fi.   D11 ' X

will denote the  zth derivative with respect to the variable x,  and the subscript

may not appear when the variable is clear from the context,   x —»  ± a  is shorthand

for the two statements  x —> a~ (approach from the left only) and  x —> a

(approach from the right only).   As usual,  / ~ Kg(x —♦ a) tot  K 4 0 will mean

j/g —» AC as x —► a.

A distribution is said to be regular if it is defined by a locally integrable

function /,  that is, if   (T, cp) = (r   , cp) = /^ f (x)cb(x)dx for each test function

(p.   Then a distribution which is regular over a subset of its support will be

called semiregular.   A distribution which is not semiregular is said to be

singular.   The class of distributions denoted by  S'   will be the class of all

tempered distributions and  ö is the corresponding test function space.   $'.  will

denote those elements of S.   whose supports are bounded on the left.

If / is a complex valued, locally integrable function such that f(x)= 0 for

- oo < x < a and there exists a real number  c such that  e~cxf(x) is absolutely
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integrable over - oo < x < oo,  then the Laplace transform of / is the function of

the complex variable  s = a + ico defined by

G(s) = £[/]=  f0"    e-sxf(x)dx,       a>c.
J _oo

Also, if / is a complex valued function absolutely integrable over  ( - oo, oo), then

the Fourier transform of / is the function of the real variable  a defined by

f(o) = ftf] = (2»)-*  f°°    f(x)e
J _oo

The analogous definitions for the transforms of distributions are as follows:   if

T is a distribution with support in  [a, oo) for some real number a  such that

e~cxT £ ö+   for some real number  c, then  T is said to be Laplace-transformable

and its Laplace transform is the function defined by

G(s) = £[T] = (e~cxT, a(x)e-<s-c>*)

for Jt«(s) > c, where  a is infinitely differentiable with support bounded on the

left and <x= 1   on a neighborhood the support of  T;  and if  T £ a  ,  then the Fourier

transform of  T is the distribution  A[T] or  T defined by   (t, <p) =  \T, <p/   for

any test function  <p £ S.   Note that a(x)e~^s ~ c'x £ S,  so the right-hand side of

the definition of the Laplace transform has meaning.   It can be shown to be

independent of any particular a,  thus we commonly use the abbreviation  G(s) =

(T, e~sx)   instead of the actual definition.   Also, the equation defining  T can be

shown to define a distribution by the use of properties of the classical Fourier

transform.

3.   Fourier transforms of semiregular distributions.  The modification of a

theorem of Titchmarsh  [5, Theorem 126, Chapter VI, p. 172]  is the starting point

for the Fourier transform.   If an  L     function / is of the form x~ag(x) fot each x

over appropriate parts of the interval  (0, oo),  we can get the asymptotic behavior

of the Fourier sine (/ )  or Fourier cosine (/ )  transform at either  0 or oo.   Then
' s       Ä ' c

to get information about /,  we write it as an integral from - oo  to  0 (/_) plus an

integral from  0 to oo  (/   ).   Both /     and  /     can be written in terms of /    and

/ ,  hence the desired behavior can be deduced from that of /    and  / .

The generalization is then carried over to Fourier transforms of distributions

by considering a tempered distribution   T (T £ a ) which is regular in both an

interval neighborhood of — oo  (where it is defined by g) and an interval neighbor-

hood of oo (where it is defined by  /).   The Fourier transform of  T  is then regular

and the behavior of the defining function as  x approaches  0 from the right or left

(x     * ± 0) can be determined from the classical results concerning / and g.    It

is interesting to note that we  cannot get an analogue of the Laplace transform

initial value theorem by these methods.   That is, if  T £ o    and   T is regular in
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an interval neighborhood of the origin, we cannot deduce similar   information about

the behavior of the defining function of Í[T] as  x —► ± oo.   This is because the

contribution from the nonregular part does not necessarily approach  0 at oo  and

so may swamp the small contribution from the regular part.

If / is a complex valued function which is absolutely integrable over

- oo < x < op, then the Fourier sine transform of / is

f (x) = ?[/(«)] = (277)-1/;   f°°    f(t)sinxtdt,
S S •/ —OO

and the Fourier   cosine  / (x) or J   [/(/)]  is the similar expression with sine

replaced by cosine.   Then the one sided sine  if) and one sided cosine  (/   )

transforms are defined in the same way, but the interval of integration is   [O, 00)

and the constant is changed to  (2/77)   .

Instead of considering one function x~agix)  for x over the whole interval

(0, 00) we generalize Titchmarsh's result as follows.

Theorem 3.1.   Let f £ L (O, 00)  such that

■X~agix),       0<x<a,

/(*) =
x~phix),      a<x<°°,

where a >  0, g £ BV(0, a) and h £ BVia, 00);  then

(i) if 0 < a < 1  and ß > 0,

and

and

(i)

/*(*) - g(0+)(2/77)'/T(l - a) sin(77a/2) |x|a~ l       (x — ± 00),

/^W~sgnU)g(0+)(2/f7)^r(l- a)cos(77a/2)|x|a-1       (x -*±«);

(ii) if a < 1  0720? 0 < ß < 1,

f+(x) ^ Moo)(2/7r)l^r(l - /S) sin(77/3/2) |x|^- !        (x -. O),

f+s(x) ^ sgn(x) h(oo)(2/nyAr(l - ß) cos (nß/2) \x\ß~l        (x-*±0).

Proof.  The proof is similar to that of Titchmarsh.   If x > 0 and a > 0,

(t7/2)'V^(x) =  (ao  rag(t)cos xt dt + J~ rßhit)cos xtdt

= 1   + Ih,     say.

Consider  i,   and let  t = u/x,  then

l'*l- J-l f °°  u-ßh(u/x)cos u du   m xß-X\hia)\ I   f
Jax \ Ja

S    -ß du   r cos u du
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by Bonnet's form of the second mean value theorem, where for any fixed number

ax,  ax <^ 8 < oo.   But

Ju~P cos u du = Oi\etx]~")    as  x —► oo
ax

fot all ß >_ 0, again by Bonnet's form of the second mean value theorem.   This

implies that

xß~l  f S u-ßcos u du < Kxß-1(ax)-?= Cx'1,
J ax

or

S
xß       \      u   ß cos u du = 0(l/x)    as

J ax

Then as in the original theorem

/g(x) - (2/7r)1Ag(0+)r(l -a) sin(77a/2)xa- 1       (x -> oo).

But I, = 0(l/x)  and hence is negligible compared to /    as x —> oo.   Hence we

have the first part of (i).   The proofs of the second part of (i) and of both parts

of (ii) are similar.   To deal with the case x < 0,  we initially perform the change

of variable  t = u/( - x) and (i) and (ii) follow for x —» - oo  and x —> 0_ ,

respectively.

This theorem is a valuable tool for deducing the behavior of f (x) at ± oo  and

0.   To do this we need two new definitions: the right-sided Fourier transform of

a function / is

f+(x) = (27r)-1AfQ°° f(t)e-ixtdt,

and the left-sided Fourier transform is

/-(x) = (277)-H   f°     f(t)e-ixtdt.

Theorem 3.2.  Let f £ L1( - oo, oo) such that

x~Ph(x), x > a,

x~ g(x), 0 < x < a,

(_x)-*p(_x),       -b<x<0,

(-%) ~ v q(-x),      x < -b,

where a > 0,  b > 0, g £ BV(0, a),  h £ BV(a, oo),  p e BV(0, b), and q e BV(b, oo);

then

(i)  if 0< a< 1  and ß-^0,

fix)
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/+(x) - (2u)-'/2g(0+)r(l - ah* s«n (*)("-i)/2|x|cx_i.      {x_^ ± x)i

(ii) if a< 1  and 0 < ß < 1,

7 + (x)-(277)-HM-)ni -ß)e7Ti sgn(x)(/3-l)/2|x|/3-l (^^ + 0);

(iii)   z/ 0 < A  <   1   and   V >   0,

r(x)-(277)-!/2M0 + )r(l-A)e77¿ sgn(*)(l-X)/2|x|A_l        (,,_ ±so).

(iv) z'/ A < 1  zW 0< i/ < 1,

/"(x) - (277)- V~)ni - «/)e* s«n (-)0-v)/2|x|v-i       u_^ ± 0)_

Proof,   (i) and (ii).

/+(x) = (277)-H f°° /(/)[cos x; - i sin **]<// = ^[/ + - z/+](x),
' JO c s

hence the results by Theorem 3-1.

(iii) and (iv).

f-(x) = (277)-*  f °   f(t)e-ixldt = (277)-* f °° f(-t)eixtdt
' J-oo   ' JO       '

= y2[rc[f(-t)] + ff+s[f(-t)]},

and, for 0 < / < oo,

t~Xp(t),        0 <t <b,

rvq(t),        t > b,

and again the results by Theorem 3.1.

Corollary 3.3.   // / is as in the preceding theorem, then

(i)   if 0 < a< 1,  0 < A< 1, ß > 0,   and v >  0,

7(x)-(277)-'/2g(0 + )r(l -a)e^' =gn(x)(ix-l)/2|x|a-l

+ (277)-*77(0 + )r(l-A)e^ s«n(x)(l   -M/2|X|X-1 (,_±„).

(ii)  i/ a<T, X < 1, .0 < ß < 1,  and 0<v< 1,

fix) - (277)-^(oc)r(l - ß)eni s«n ^)(/3-D/2|x|/3_l

+ (277)-1/29(oo)r(l - v)eni se° <*>n-v)/2|%|^-l       U -» ± 0).

In each part of this corollary one of the two terms in the sum will dominate,

depending upon the relative sizes of the power of  |x|   in each term.   Similar sums

will be written throughout the rest of this paper, with the understanding that one

of the terms in any given sum will dominate.

fi-t) =
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This corollary completes the classical preliminaries and we are ready to

prove a result for the Fourier transform of semiregular distributions.

Theorem 3.4.   Let  T be a tempered distribution with support in ( - oo, oo)

such that  T equals the distribution corresponding'to a function g  over ( - <x>, b]

and corresponding to a function f over [a, oo) for any two real numbers   b <^ a.

If g £ Ll( - oo, b] and g(x) = ( - x)~ßq( - x) for each x £ ( - oo, d], and if

f £ Ll[a, oo) and f(x) = x~ap(x) for each x e [c, oo), where  c ^ a,   c >_ 0, d <  b,

d < 0,  0 < a< 1,  0 < /3 < 1,   p £ BV[c, oo), and q £ BV[ - d, oo),  then  f  is a

regular distribution defined by a function $ and

<DU) - (277)-'/2a(-)rXl _ ß)eni  sgn (X)(l-ß)/2\x\ß-l

+ (2tt)- V~)ni - a)eni s«n M (a" l )/2\x\a~ l       U — ± 0).

Proof.   T can be decomposed into  T = T    + S + T, where the supports of

T , S, and  T, ate  ( -oo, d], [d, c], and  [c, oo), respectively.   S has compact

support, hence  S is regular and defined by the function u such that  u(x) =

(2tt)~   (S , e~ixt)   and  u can be extended to the Complex plane as an entire

function  [6, p. 307].

Then for T    and  T, we have  f   = T- and f. = 7>.   Also, ï[r] =

ÎLT   +S + T,]=T   + S + T,= T~+T   + Tr = 7\   where $ = g + u + j.   Then

u  is bounded as  x —» ± 0,  and the behavior of g  and / is given by Theorem 3.2

with the functions  g  and  p appearing in that theorem being identically 0.

It is now easy to see why we do not have a similar result for x —> ± oo. The

dominant term in the behavior of $ as x —► ± oo may be u, the restriction to the

real axis of an entire function, and it does not necessarily approach 0 at oo and

may swamp the contributions from g  and /.

This suggests the question of what happens if we begin with  T £ o    such

that  T is regular in an interval neighborhood of the origin, say  [ — b, a].   T

could then be decomposed into  T = U + T, + V where  / is the locally integrable

function defining  T over  [ - b, a].   We would then have  T. = Tf, where / is

bounded.   However, at present we are not prepared to cope with   17 and   V,  both

arbitrary elements of S' .   A more general form of this question will be answered

in the next section.

4.   Laplace and Fourier transforms of singular distributions.  This section

deals with arbitrary elements of S' ,  and results of the final and initial value

type are obtained for both the Laplace and Fourier transforms.

The decomposition of an arbitrary distribution is not quite as straightforward

as in the semiregular case, but there is no great difficulty.   Given any distribu-

tion  T £ Jj' ,  any point y  in the support of  T  and an arbitrary positive number 8,
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T can be written as  S + V where the supports of S and   V are contained in

( - oo, y] and  [y - <5, oo), respectively.   This is because the two sets  ( - oo, y)

and  (y - 8, oo) certainly form a locally finite open covering of the support of  T,

and the assertion follows from   [3, Theorem 25, p. 66\.   Zemanian's result for

semiregular distributions can now be generalized by performing such a decomposi-

tion on a distribution  T £ o'   with support bounded on the left at zero.

Theorem 4.1.   Lez*  e~cxT £ a    with support in  [0, oo) for some real number

c,  and decompose  T  into S + V where   S has support in  [0, a] and  V has

support in [a - 8, oo) for positive numbers  a and 8 such that 8 < a.    Then there

exists a positive integer m such that S - £m_n  D1Tfi. where each p.  is a Radon

measure whose support is contained in  [0, a].   If each p.  is absolutely continuous

so that dp. - f.dx where f. £ L  [0, a\, and if  f .(x) = x~alg.(x) for each x  in

(0, a) where 0 < a. < 1, and g .(0  )  exist for all i between 0 and m,   then we

have

G(ff) ~ ¿ Hl - a.)g.(0 + )a¿+a¿_1       (a -♦ oo).
z+a,--l

t u - a.)g.(v   )c

z' = 0

Proof.  T = S + V, hence  G (a) = £[r] = £[S] + £[v] = G xia) + G2(a).   Since

|G2(er)| < Me~a°  fot some positive   b [7, p. 246],  G2(ct) —» 0 faster than any

negative power of  a.   For S,  the compact support is a closed interval and since

any bounded convex set is regular, the given representation for S  is justified

[4, p. 99].   The Laplace transform converts differentiation into multiplication by

powers  [1, Corollary 2.4, p. 49],  so f\S\ = 2^=0 a1 t[T^   If each  p. is

absolutely continuous, the Radon-Nikodym theorem assures us of the existence

of the unique  f .(x) £ L  [0, a] and if each /.(x) = x~a'g .(x),  we have

m^jr^ÏT a    1.
ft     L *-%¿(*)J

But the Laplace transform of a regular distribution is the same as that of the

defining function, hence

L    x       *g¿(x)J J0 l

Then by the classical theorem for the Laplace transform  [7, Theorem 8.6-1.

p. 243],

777

Gy(a) ~ £ r(l - a.)gi.(0+)fff + ai-1        (a — oo).

7=0

But  GAo) —► 0 faster than any negative power of  a,  so its contribution is

negligible compared to that of  G,(ct).
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Moving to Abelian theorems of the final value type for the Laplace transform

of a singular distribution, a slightly more specific representation for distributions

of compact support is more suitable.   The various existing representation theorems

of this type do not always get the support of the measures contained in the

support of the distribution, so in going to other representations it may be neces-

sary to sacrifice this desirable support condition to get stronger conditions on the

measures.   In fact, some results from Trêves   [6] do exactly this.   Each distribu-

tion of compact support is of finite order.   Theorem 24.4 on p. 259 of  [6] gives a

representation for distributions of finite order as the finite sum of derivatives of

Radon measures whose supports are contained in an arbitrary open set containing

the support of the distribution.   Then Theorem 24.5 on p. 262 in turn says that

for every Radon measure  p there is a locally  L°° function / whose support is

contained in an arbitrary open set containing the support of p  such that T   = DT,.

Since locally each   L     function is   L   ,  this gives us the desired representation

of a distribution of compact support aá a finite sum of derivatives of locally   L

functions, yet the supports of these functions are contained in some arbitrary

open set containing the support of the distribution.

We now will also need a representation for tempered distributions and

Schwartz  [4, p. 239]  supplies a suitable one.   A distribution  T £ o'   can be

represented as the  ;'th  order derivative of a continuous tempered function.   That

is,   T = D'T        -,,/-,       ,  where  I is bounded and continuous.   As in the
_(l+x2)fe/2/(x)' _       _'

representation theorems for distributions of compact support, there is some

flexibility here also.   If the support of  T does not contain the origin, the

representation can be written   T = D'T  ,        .   It is also possible to get a
xK-f(x)

representation with tempered measures.   With these representations at our disposal

we are now ready to prove the final value type result for the Laplace transform.

Theorem 4.2. Let  T £ S'+ such that for some real t,   e~lxT £ %\,  and let

T = S + V where S has support in  [ — b, a] and V has support in  [a - 8, oo) for

positive numbers 8, a,  and b  such that 8 < a.    Then given any open neighborhood

Í!  of [ - b, a] there exists a nonnegative  integer m such that S = IT1 „ D'T,
j o o i=0 f.

where each f.  is in  L   (Í1),  having support in il.* Also, there exist nonnegative

integers   I and k such that  V = D T  , where g  is bounded and continuous,
X      0 ( X )

having support containing  [a - 8, oo).   Then if 0 = [ - d, c] and if g(x) = x~ah(x)

for x > y where y > a,  a < 1 + k,   and b(°<>) exists, we have

m

G(a) - r(l - a + k)h(°°)aUa-k-1 + £ K.a{       {a -» 0 + )

7 = 0

where   K. = (c ,f.(x)dx.
i      J —a1 i
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Proof.  Again x[t] = £[s] + <L[v].   The representation for S is justified by

the remarks preceding the theorem, so

777 mm

S[S] = £ o&lT,) = £ a^[/.] = £ o-ij^ e-^f.^dx.

7=0 7=0 7 = 0

Since we are considering  o —* 0  ,  assume that  0 < a < rf for some positive

number ç.   Then

7.(x)| <ed^\ffx)\ £ L\-d,c).

Then by Lebesgue's Dominated Convergence Theorem we have

fC    e-axf{x)dx-^{C    f.(x)dx       (ct-»0 + ).
J-d * J-d    »

Then

£[V] = l[D'T ] = a'£[T 1 = a'£U*g(*)].
xKg(x) xKg(x)

Let  m = - k,  so  777 <_ 0.   The last expression then equals

íg(x) 6

o-^U-^+^iU)] ~ r(l - 772 - a)hi°c)ol+a+m-]       (o -» 0+)

iÍ772 + a<l   ora<l-??2 = l+/éby the classical result.

In the preceding initial value type theorem the distributions and measures

were restricted to have support in  [O, 00) by the growth of  e~CTx for negative x

and large positive  a.   Later we will investigate refinements of the basic theorems

and see that we can get rid of this restriction for the Laplace transform.   This

problem is not present in the basic results for the Fourier transform, but

restrictions of a different nature occur.

Theorem 4.3.   Let  T  be a tempered distribution and write  T = U + S + V

where the supports of  U, S,   and V are ( — 00, - b], [ - b - (, a + 8], and [a, 00),

respectively, where  a, b, e and 8 are positive numbers such that e < b and

8 <a.   Then there exist functions g £ L  (b, 00) and h e L (a, 00) such that

U = Dm(( - x)kg( - x)) and V = D"(xlh(x)).   Assume g and h have support in

[b, 00) and  [a, 00),  respectively.   Also S = \Y/._rI>1T,   where each f. has support

in Q, and is in  L  (il), with ÇI some open interval containing  [ — b — e, a + 81,

say  (- d, c).   If I = 0,  k = 0,  g(x) = x_^(x) for x e [b, 00), and h(x) = x~ ap(x)

for x e [a, 00), where 0 < a< 1,  0 < /3 < 1,  g e BV[b, 00) a72cz' h £ BV[a, 00),

then the Fourier transform of T is a regular distribution defined by the function

rj> such that
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$(x) -> (27r)-lAq(°°)r(l - ß)eni sgn(x)(777 + l-/3)/2|x|m+/3-l

+ (2t7)-*2>> s^{x)7Ti/2jCdf.it)dt\x\'

7=0

+ (2z7)-I/2p(oo)r(l _a)e^s8n(x)(77+a-l)/2|x|n+cx-l {x _^  ±o)_

Proof.  The representations for   17, S,  and   V ate justified by the remarks

preceding the results for the Laplace transform.   For S we have  S = Sr_0 (ix)'T,

= lr, (ix)'Tr.   But  iixi = \x\'ej ?sn(*>^/2,  and

fix) = (2zr)-^ [c   e-ixtf.(t)dt - (2»r)-H [\ f.(t)dt       (x ^ ±0),
7 J—d 7 J—a    7

again by Lebesgue's Dominated Convergence Theorem.   For  U,

Û=(ix)mT       . = (ix)mDkT .     v
(-x)^g(-x) «?<-*)

We  now  cannot infer the behavior of D  g from the behavior of g, hence the

necessity of the assumption that  k = 0.   In this case,   fl = (ix)mT-<~^.   But by

Theorem 3.2(iv),

"¡UN (2»r)-V~)ni - ß)eni s«n ^)(1-/3)/2|x|/3-l        (x _^ ±0).

The argument for  V is similar and the result follows from the fact that

f = Ö + S + V.
Using slightly different initial conditions and the alternate representation

for S,  it is possible to get an initial value result for the same type of distribution.

Theorem 4.4.   Let  T = U + S + V as in the preceding theorem, again with

17 = Dm(( - x)kg{ - x)) and V = D"(xlh(x)).   Let S = Is   n D'T,,    where each  a.
7 =0 My ri

is an absolutely continuous measure whose support is contained in the support of

S,  so that da. = f.dx where f £ L   [ - b, a].   If f .(x) = x      'u.(x), 0 < x < a,   and

/.( - x) = x~viv .(x), 0 < x < b,  for each j,   and if h(x) = (x - a)~ ^w(x), a < x < oo,

and g(- x) = (x - b)~^z(x),  b < x < oo,   where  w £ BV(a, c),   z £ BV(b, d),

0 < £< 1,  0 < rf < 1,  and 0 < 37. < 1,   0 < v. < I,  u. £ BV(0, a) and v. £ 61/(0, b)

for each  j between 0 and s,   then the Fourier transform of T is a regular

distribution defined by a function cj) such that

<&(*) - (2Tr)~'Az(b + )r(l - Oe-ibx+T7i S8n (*X-+1-^/2|;c|zk+Í-1

+ f [(2n)-'Av.(0 + )r(l-u)eni ••-UX/*!-^)/^/*"/-«

7 = 0

+ (277)-^.(0 + )r(l - r,)e7Ti Sgn (■Ï0 + V'1V.I|   |i*^-l]

+ (2n)-lAw(a + )r(l -Oe-iax4ni •«■(««•♦{-i)/2|jrJ»*C-t        (x _ ±00).
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Proof.   For  V we have   V = iix)nfh = (ix)nTg.   But

b(x) =(2tt)-IA f°° (t - a)-tW(t)e-ixt dt
Ja

= (2n)~lAe-iax f°° u-iw(u + a)e-iuxdu
Jo

- (277)-^(a + )r(l - Oe~iax+7Ti sgn t»>«-1>^f-1        (x - ±~)

by Theorem 3.2.   Combined with  (zx)"  we obtain the last term of the result.   The

first term follows similarly from  U.   Finally,  S gives

s = ¿ (ixVÎ,. = ¿ (ixVTß - ¿ (zx)^;;.
y=o 7=0 y=o

The behavior of each /.  is given by  f. = f~ + f .   and Theorem 3.2.

Note on Theorems 4.3 and 4.4.  In the representations for  U and   V the

absolutely integrable functions g  and  ¿  might not have support in   [b, oo) and

[a, oo), respectively.   If the support of h, tot example, is contained in a neigh-

borhood of  [a, oo), the nature of  h  in the complement of  [a, oo) must be taken

into account in both  theorems.   This  additional contribution to the representation

is a function integrable over   a relatively compact set, hence in analyzing the

asymptotic behavior of  T it may be lumped together with the representation for

S  and treated accordingly.   In Theorem  4.3 the local integrability of h  is

sufficient and from the argument for S we see that the contribution to the final

result is the term

(277)-*e" sgn(x)77272 f«     h(t)dt\x\n
Ja-e

where   [a - e, oo)  contains the support of h.   The situation is not as simple,

however, in Theorem 4.4.   The integrability of h  over  [a - e, a]  is not a

sufficient condition to determine asymptotic behavior of the transform of the

distribution, so we must assume a singularity at the point a.   If h(x) =

(a - x)~ f (x) over the interval  (a - e, a) where  0 < A < 1  and / e BV(a - (, a),

then  0 will contain the additional term

(277)~!/V(«")ni-A)e-^a+77¿s«n(x)(X-1)/2|x|X-1.

To see this note that  h(x) = Urz)-*]"^ (a - t)~kf (t)e~ixt dt.   The result then

follows by using the methods of the proof of Theorem 3.2(i).   U and g  should

be treated similarly.

We can now examine in more precise terms the remark in the introduction

that, roughly speaking, transforms of distributions are better behaved at zero

and worse behaved at infinity than are the transforms of functions.

Given an  L    function /,  the Riemann-Lebesgue lemma tells us that f (x)
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tends to zero as  x tends to infinity.   In the special case discussed in  §3,

Titchmarsh demonstrates the rate of decrease.   The Laplace transform for a

similar case behaves in the same manner.   We also considered theorems for both

transforms which yielded growth at zero like   Kx  ~     where  0 < a < 1.

For distributions,   e~cxT £ S'   with support in [0, oo)  implies   e~cxT =

DmT u/-. for nonnegative integers  k, m and bounded and continuous  g.
( 1+x   )        ß(x) i

Thus in the special case  c = 0,  £[T]  behaves like the function   Kxm~   ~   ,  which

may tend to zero or infinity at either zero or infinity depending upon the relative

sizes of 772 and  k.   As mentioned previously, the Fourier transform of a distribu-

tion of compact support is an entire function, hence bounded at zero and possibly

unbounded at infinity.   A theorem of Paley and Wiener [6, Chapter 29]  indicates

that if  T £ &'   then  T is regular, defined by a function which is bounded by a

polynomial on the real axis.   The special cases for the Laplace transform of

semiregular distributions had behavior identical to that of the defining functions,

but the Fourier transform of a semiregular distribution of that form contained the

contribution from an entire function so it had undetermined growth at infinity.

Then the generalization to transforms of singular distributions yielded both

Fourier and Laplace transforms which behave like sums of terms of the form

Kxm-k-1.

In all but a few of the cases mentioned for distributions we have no

assurance that the transforms will not blow up rapidly at infinity.   Since we are

assured of such "nice" behavior of Fourier transforms and reasonably "nice"

behavior of Laplace transforms of  L     functions, the transforms of distributions

clearly behave much "worse" at infinity than do the transforms of functions.

The behavior of transforms at zero is another matter, since the polynomials

and entire functions contribute to, rather than detract from, the "good" behavior

there.   The special cases of both Laplace and Fourier transforms of functions

behaved like   Kxa~     at zero.   By comparison, many of the transforms of distri-

butions mentioned above have behavior like polynomials or entire functions,

hence the comment about the "better" behavior of distribution transforms at zero

is a reasonable one.

5.   Improved Abelian theorems.   There are now two final questions which

remain to be investigated.   As mentioned earlier, the restriction of the support

of the distributions to [0, oo)  in the initial value type theorem for the Laplace

transform is not necessary, so we need to investigate the effect of allowing the

support to contain the origin as an interior point.   Also, throughout the develop-

ment of the Abelian theorems for distributions, no special properties of the

particular classical Abelian theorems have been utilized.   This suggests that

our method of generalization would apply readily to other classical results, and

this turns out to be true.
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We have already considered the problem of singularities of a function at

points other than zero for the Fourier transform of-distributions.   In Theorem 4.4

we had   T = U + S + V and an appropriate representation theorem for each of the

three elements of the decomposition.   For example, the support of  V  is  [a, oo)

and  V = D"ixlhix)) where  * £ LliO, oo).   Then   V - iix>nTç,x) and

hix) = (277)-* f™bit)e-ixtdt -» 0 as x -> 00.

This implies that   V = o(x")  as  x —► 00,  but this estimate is rather crude.   The

assumption of a singularity of h(x)  at a gives a more precise result:

V "* (2n)-1/2w(a + )F(l - Oe~iax+7ri sgn (x) (n+^ ~ ' )/2|x|" + i " »       (x — ±00).

Thus we see that the expression we obtain by taking  h(x) = (x - a)~ ^w(x)  on

(a, c) with  0 < ¿, < 1   and  w £ BV(a, c) differs from the expression resulting from

a singularity at zero by the factor  e~tax and contains  w(a ) rather than the

limit at zero from the right of some function.   We can consider distributions

whose representing functions have a finite number of singularities of this kind,

and each will make a similar contribution to the behavior of the transform of the

distribution at 00.

The effect of considering singularities at nonzero points for the Laplace

transform is somewhat similar.   If / is a Laplace transformable function having

support in  [a, 00)  such that f(x) = (x - a)ag(x)  in (a, b) tot some  b > a,  where

a< 1   and g(a )  exists, then

G(o) = f°°   (x - a)-ag(x)e-ax dx.
J — OO

By a change of variable,

G(a) = e-™^ u~ag(u + a) du - T(l - a)g(a + )e'^aaa-1        (a — 00).

So the additional contribution to the asymptotic behavior in the case of the

initial value type theorem for the Laplace transform is a factor  e~aa,  and just

as for the Fourier transform we may consider any function that has a finite

number of singularities of this kind.

For the final value type Abelian theorem we can essentially reverse this

procedure.   That is, if f(x) = eaxx~Ph(x)  on [b, 00)  for some real  b where

ß < I  and Moo) exists, then  G(o) ~ T(l - ß)hi«,)(a - a)°~ l  (a -> a+) if G(a)

exists  [2, p. 459].   Again we can consider functions that are a finite sum of

functions of this nature.

These minor generalizations have been based on the fact that the Abelian

theorems for transforms depend directly on the behavior of the representing

functions.   If we begin with different Abelian theorems they will imply
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distribution results if the functions concerned satisfy the conditions imposed by

the particular distribution representation.   Even if they are not immediately

satisfied, we may still be able to get a distribution theorem since there is a

certain amount of flexibility in the representations.   For example, if we have the

representation  T = DmT    where p  is a measure, we can integrate p  one orcmore

times to get a function with the desired properties at the sacrifice of increasing

rn by the corresponding number.

As an example of an improved Abelian theorem we will consider one from

Doetsch  [2, p. 460]  and use it to obtain a distribution result.   Theorem 4.2

generalizes to the following:

Theorem 5.1.   Let  e~cxT £ S'+ for some real number c,   and let  T = S + V

where S has support in  [ - b, a]  and V has support in  [a - 8, oo)  for positive

numbers 8, a,  and b such that S < a.    Then S  is of compact support and hence

given any open neighborhood Q  of [ - b, a]  there exists a positive integer m

such that S = Sm n D'T,   where each f.  is in  L (fi),  having support in Q,.   Also,

there exist positive integers  I and k such that  V = D T  , where g  is
*  g(x)

bounded and continuous, having support in id, oo) for some d < a.    Then if

J» = I — y, t\,  g   is absolutely integrable over [d, oo)  and if g(x) ^ Ax~ ah(x)

(x —► oo) for complex numbers A   and a such that 3\«(a) < 1,  and if h(x)

satisfies h(ux)/h{x) —► 1  for any  u > 0 we have

772

Gia) ~ ATil - a)h(l/a)al+u+a- l + £ K.a{       (a -> 0 + )

¿=o

where   K . = f'    f .(x) dx.
l       J —y1 i

In the classical Abelian theorem that was generalized to yield Theorem 4.1

we had f(x) ~ Kyx~ a (a < 1) as  x -» 0+ implies £[/] ~ K2a°- 1   as a -» 0+.

If  K2 = 0,  the theorem says only that fix) = 0(x~ a)  as  x —» 0    implies

i~[/](tr) = o{aa~  )  as  a —> oo.   To get more precise information than this we need

to compare / to something other than powers.   The function h(x) provides

greater flexibility in comparison.
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