Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Flexible algebras of degree two


Author: Joseph H. Mayne
Journal: Trans. Amer. Math. Soc. 172 (1972), 69-81
MSC: Primary 17A20
DOI: https://doi.org/10.1090/S0002-9947-1972-0311727-1
MathSciNet review: 0311727
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: All known examples of simple flexible power-associative algebras of degree two are either commutative or noncommutative Jordan. In this paper we construct an algebra which is partially stable but not commutative and not a noncommutative Jordan algebra. We then investigate the multiplicative structure of those algebras which are partially stable over an algebraically closed field of characteristic $ p \ne 2,3,5$. The results obtained are then used to develop conditions under which such algebras must be commutative.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Albert, Power-associative rings, Trans. Amer. Math Soc. 64 (1948), 552-593. MR 10, 349. MR 0027750 (10:349g)
  • [2] -, A theory of power-associative commutative algebras, Trans. Amer. Math Soc. 69 (1950), 503-527. MR 12, 475. MR 0038959 (12:475d)
  • [3] -, On commutative power-associative algebras of degree two, Trans. Amer. Math. Soc. 74 (1953), 323-343. MR 14, 614. MR 0052409 (14:614h)
  • [4] -, On partially stable algebras, Trans. Amer. Math. Soc. 84 (1957), 430-443. MR 19, 1156. MR 0092778 (19:1156f)
  • [5] -, Addendum to the paper on partially stable algebras, Trans. Amer. Math. Soc. 87 (1958), 57-62. MR 19, 1157. MR 0092779 (19:1157a)
  • [6] J. I. Goldman, A class of flexible power-associative algebras of degree two, M. S. Thesis, Illinois Institute of Technology, Chicago, Ill., 1963.
  • [7] L. R. Harper, On differentiably simple algebras, Trans. Amer. Math. Soc. 100 (1961), 63-72. MR 24 #A116. MR 0130250 (24:A116)
  • [8] E. Kleinfeld and L. A. Kokoris, Flexible algebras of degree one, Proc. Amer. Math. Soc. 13 (1962), 891-893. MR 25 #5088. MR 0141691 (25:5088)
  • [9] L. A. Kokoris, Power-associative commutative algebras of degree two, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 534-537. MR 14, 11. MR 0048422 (14:11f)
  • [10] -, On nilstable algebras, Proc. Amer. Math. Soc. 9 (1958), 697-701. MR 20 #3902. MR 0097433 (20:3902)
  • [11] -, Nodal non-commutative Jordan algebras, Canad. J. Math. 12 (1960), 488-492. MR 22 #6834. MR 0116039 (22:6834)
  • [12] -, Flexible nilstable algebras, Proc. Amer. Math. Soc. 13 (1962), 335-340. MR 25 #1190. MR 0137741 (25:1190)
  • [13] R. H. Oehmke, On flexible algebras, Ann. of Math. (2) 68 (1958), 221-230. MR 21 #5664. MR 0106934 (21:5664)
  • [14] -, On flexible power-associative algebras of degree two, Proc. Amer. Math. Soc. 12 (1961), 151-158. MR 25 #103. MR 0136635 (25:103)
  • [15] -, Flexible power-associative algebras of degree one, Proc. Nat. Acad. Sci. U. S. A. 63 (1969), 40-41. MR 42 #1870. MR 0266968 (42:1870)
  • [16] C. E. Tsai, Flexible partially stable algebras, Trans. Amer. Math. Soc. 122 (1966), 48-63. MR 33 #4113. MR 0195917 (33:4113)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17A20

Retrieve articles in all journals with MSC: 17A20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0311727-1
Keywords: Flexible algebras, power-associative algebras, degree two, stable, noncommutative Jordan algebras
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society