Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Varieties of linear topological spaces


Authors: J. Diestel, Sidney A. Morris and Stephen A. Saxon
Journal: Trans. Amer. Math. Soc. 172 (1972), 207-230
MSC: Primary 46A05; Secondary 46B99, 46M15
DOI: https://doi.org/10.1090/S0002-9947-1972-0316992-2
MathSciNet review: 0316992
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper initiates the formal study of those classes of locally convex spaces which are closed under the taking of arbitrary subspaces, separated quotients, cartesian products and isomorphic images. Well-known examples include the class of all nuclear spaces and the class of all Schwartz spaces.


References [Enhancements On Off] (What's this?)

  • [1] R. F. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403. MR 18, 406. MR 0081458 (18:406e)
  • [2] S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN , Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
  • [3] Cz. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164. MR 22 #5872. MR 0115069 (22:5872)
  • [4] -, A topological proof that every separable Banach space is homeomorphic to a countable product of lines, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 487-493. MR 41 #2643. MR 0257995 (41:2643)
  • [5] Cz. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of $ F$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 677-683. MR 24 #A2219. MR 0132374 (24:A2219)
  • [6] M. S. Brooks, Sidney A. Morris and Stephen A. Saxon, Generating varieties of topological groups, Proc. Edinburgh Math. Soc. (to appear). MR 0318383 (47:6930)
  • [7] Su-shing Chen and Sidney A. Morris, Varieties of topological groups generated by Lie groups, Proc. Edinburgh Math. Soc. (to appear). MR 0323958 (48:2311)
  • [8] P. Civin and B. Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906-911. MR 19, 756. MR 0090020 (19:756a)
  • [9] M. M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 21, Reihe: Reelle Funktionen, Springer-Verlag, Berlin, 1958. MR 20 #1187. MR 0094675 (20:1187)
  • [10] Joseph Diestel, Sidney A. Morris and Stephen A. Saxon, Varieties of locally convex topological vector spaces, Bull. Amer. Math. Soc. 77 (1971), 799-803. MR 0282188 (43:7901)
  • [11] E. Dubinsky and M. S. Ramanujan, Power series nuclear spaces (in preparation).
  • [12] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $ C(K)$, Canad. J. Math. 5 (1953), 129-173. MR 15, 438. MR 0058866 (15:438b)
  • [13] -, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955), 1-191, 1-140. MR 17, 763. MR 0075539 (17:763c)
  • [14] J. Horvath, Topological vector spaces and distributions. Vol. 1, Addison-Wesley, Reading, Mass., 1966. MR 34 #4863. MR 0205028 (34:4863)
  • [15] M. I. Kadec, Linear dimension of the spaces $ {L_p}$ and $ {l_q}$, Uspehi Mat. Nauk 13 (1958), no. 6 (84), 95-98. (Russian) MR 21 #297. MR 0101486 (21:297)
  • [16] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces $ {L_p}$, Studia Math. 21 (1961/62), 161-176. MR 27 #2851. MR 0152879 (27:2851)
  • [17] Shizuo Kakutani, Free topological groups and infinite direct product topological groups, Proc. Imp. Acad. Tokyo 20 (1944), 595-598. MR 7, 240. MR 0014093 (7:240c)
  • [18] N. J. Kalton, Unconditional and normalised bases, Studia Math. 38 (1970), 243-253. MR 0276716 (43:2456)
  • [19] S. Kaplan, Cartesian products of reals, Amer. J. Math. 74 (1952), 936-954. MR 14, 1002. MR 0054944 (14:1002a)
  • [20] T. Kōmura and Y. Kōmura, Über die Einbettung der nuklearen Räume in $ {(s)^A}$, Math. Ann. 162 (1965/66), 284-286. MR 32 #6190. MR 0188754 (32:6190)
  • [21] H. E. Lacey and R. J. Whitley, Conditions under which all the bounded linear maps are compact, Math. Ann. 158 (1965), 1-5. MR 30 #3373. MR 0173159 (30:3373)
  • [22] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $ {\mathfrak{L}_p}$-spaces and their applications, Studia Math. 29 (1968), 275-326. MR 37 #6743. MR 0231188 (37:6743)
  • [23] R. H. Lohman, An embedding theorem for separable locally convex spaces, Canad. Math. Bull. (to appear). MR 0291756 (45:847)
  • [24] A. A. Markov, On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 195-272. MR 7, 7.
  • [25] A Martineau, Sur une propriété universelle de l'espace des distributions de M. Schwartz, C. R. Acad. Sci. Paris 259 (1964), 3162-3164. MR 29 #6306. MR 0169051 (29:6306)
  • [26] S. Mazur and W. Orlicz, Sur les espaces métriques linéaires. II, Studia Math. 13 (1953), 137-179. MR 16, 932. MR 0068730 (16:932e)
  • [27] E. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415-416. MR 28 #5421. MR 0162222 (28:5421)
  • [28] A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. 2 (1966), 150-156. (Russian) MR 34 #6513. MR 0206695 (34:6513)
  • [29] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145-160. MR 41 #3655a. MR 0259010 (41:3655a)
  • [30] -, Varieties of topological groups. II, Bull. Austral. Math. Soc. 2 (1970), 1-13. MR 41 #3655b. MR 0259011 (41:3655b)
  • [31] -, Varieties of topological groups. Ill, Bull. Austral. Math. Soc. 2 (1970), 165-178. MR 41 #3655c. MR 0259012 (41:3655c)
  • [32] -, Varieties of topological groups and left adjoint functors, J. Austral. Math. Soc. (to appear). MR 0333059 (48:11384)
  • [33] -, Free products of topological groups, Bull. Austral. Math. Soc. 4 (1971), 17-29. MR 0274647 (43:410)
  • [34] -, Free compact abelian groups (submitted for publication).
  • [35] -, Varieties of topological groups, Bull. Austral. Math. Soc. 3 (1970), 429-431.
  • [36] -, Quotient groups of topological groups with no small subgroups, Proc. Amer. Math. Soc. 31 (1972), 625-626. MR 0293000 (45:2081)
  • [37] -, Locally compact abelian groups and the variety of topological groups generated by the reals, Proc. Amer. Math. Soc. 34 (1972), 290-292. MR 0294560 (45:3630)
  • [38] -, A topological group characterization of those locally convex spaces having their weak topology, Math. Ann. 195 (1972), 330-331. MR 0295034 (45:4102)
  • [39] Hanna Neumann, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, New York, 1967. MR 35 #6734. MR 0215899 (35:6734)
  • [40] R.E.A.C. Paley, Some theorems on abstract spaces, Bull. Amer. Math. Soc. 42 (1936), 235-240. MR 1563277
  • [41] N. T. Peck, Every locally convex space is a subspace of a nearly exotic space (to appear).
  • [42] A. Pełczyński, On the isomorphism of the spaces $ m$ and $ M$, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6 (1958), 695-696. MR 21 #1513. MR 0102727 (21:1513)
  • [43] -, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. MR 23 #A3441. MR 0126145 (23:A3441)
  • [44] -, On Banach spaces containing $ {L_1}(\mu )$, Studia Math. 30 (1968), 231-246. MR 38 #521. MR 0232195 (38:521)
  • [45] -, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58 (1968), 92 pp. MR 37 #3335. MR 0227751 (37:3335)
  • [46] A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces $ C(\Omega )$ for $ \Omega $ without perfect subsets, Studia Math. 18 (1959), 211-222. MR 21 #6528. MR 0107806 (21:6528)
  • [47] E. S. Pondiczery, Power problems in abstract spaces, Duke Math. J. 11 (1944), 835-837. MR 6, 119. MR 0011104 (6:119g)
  • [48] M. S. Ramanujan, Power series spaces $ \Lambda (\alpha )$ and associated $ \Lambda (\alpha )$-nuclearity, Math. Ann. 189 (1970), 161-168. MR 42 #5003. MR 0270110 (42:5003)
  • [49] J. R. Retherford and C. W. McArthur, Some remarks on bases in linear topological spaces, Math. Ann. 164 (1966), 38-41. MR 33 #3079. MR 0194873 (33:3079)
  • [50] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. Ill 5 (1957), 471-473. MR 19, 562. MR 0088682 (19:562d)
  • [51] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $ L^p$ to $ L^r(\mu)$ to $ L^r(\nu)$, J. Functional Analysis 4 (1969), 176-214. MR 40 #3277. MR 0250036 (40:3277)
  • [52] Stephen A. Saxon, Nuclear and product spaces, Buire-like spaces, and the strongest locally convex topology, Math. Ann. 195 (1972). MR 0305010 (46:4140)
  • [53] -, Embedding nuclear spaces in products of an arbitrary Banach space, Proc. Amer. Math. Soc. 34 (1972), 138-140. MR 0318823 (47:7369)
  • [54] -, (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology (in preparation).
  • [55] -, Normalized Schauder bases in Fréchet spaces (in preparation).
  • [56] H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 #1689. MR 0193469 (33:1689)
  • [57] W. J. Stiles, On properties of subspaces of $ {l_p},0 < p < 1$, Trans. Amer. Math. Soc. 149 (1970), 405-411. MR 41 #5930. MR 0261315 (41:5930)
  • [58] W. Szlenk, The non-existence of a separable Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61. MR 37 #3327. MR 0227743 (37:3327)
  • [59] T. Terzioğlu, On Schwartz spaces, Math. Ann. 182 (1969), 236-242. MR 40 #683. MR 0247417 (40:683)
  • [60] A. Zygmund, Trigonometrical series. Vol. 1, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A05, 46B99, 46M15

Retrieve articles in all journals with MSC: 46A05, 46B99, 46M15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0316992-2
Keywords: Products, subspaces of locally convex spaces, quotients of locally convex spaces, Banach spaces, Fréchet spaces, nuclear spaces, Schwartz spaces, reflexivity, separability, weak topology, strongest locally convex topology, $ {l_1}(\Gamma ),{l_p},{L_p},{c_0}$ spaces of continuous functions, singly generated variety, universal generator
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society