Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotic behavior of linear integrodifferential systems


Authors: Viorel Barbu and Stanley I. Grossman
Journal: Trans. Amer. Math. Soc. 173 (1972), 277-288
MSC: Primary 45M05
DOI: https://doi.org/10.1090/S0002-9947-1972-0308712-2
MathSciNet review: 0308712
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the system $ ({\text{L)}}y'(t) = Ay(t) + \int_{ - \infty }^t {B(t - s)y(s)ds,y(t) = f(t),t \leqslant 0} $ where $ y(t)$ is an $ n$-vector and $ A$ and $ B(t)$ are $ n \times n$ matrices. System $ ({\text{L)}}$ generates a semigroup given by $ {T_t}f(s) = y(t + s;f)$ for $ f$ bounded, continuous and having a finite limit at $ - \infty $. Under hypotheses concerning the roots of $ \det (\lambda I - A - \hat B(\lambda ))$, where $ \hat B(\lambda )$ is the Laplace transform, various results about the asymptotic behavior of $ y(t)$ are derived, generally after invoking the Hille-Yosida theorem. Two typical results are Theorem 1. If $ B(t) \in {L^1}[0,\infty )$ and $ {(\lambda I - A - \hat B(\lambda ))^{ - 1}}$ exists for $ \operatorname{Re} \lambda > 0$, then for every $ \epsilon > 0$, there is an $ {M_{\epsilon}}$ such that $ \vert\vert{T_t}f\vert\vert \leqslant {M_{\epsilon}}{e^{\epsilon t}}\vert\vert f\vert\vert$. Theorem 2. If $ {(\lambda I - A - \hat B(\lambda ))^{ - 1}}$ exists for $ \operatorname{Re} \lambda > - \alpha (\alpha > 0)$ and if $ B(t){e^{\alpha t}} \in {L^1}[0,\infty )$, then the solution to $ ({\text{L)}}$ is exponentially asymptotically stable.


References [Enhancements On Off] (What's this?)

  • [1] R. K. Miller, Asymptotic stability of linear Volterra integro-differential equations, J. Differential Equations (to appear). MR 0290058 (44:7243)
  • [2] S. I. Grossman and R. K. Miller, Linear Volterra integro-differential systems with $ {L^1}$ kernels (submitted).
  • [3] E. Hille and R. S. Phillips, Functional analysis and semigroups, rev. ed., Amer. Math. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [4] R. D. Driver, Existence and stability of solutions of a delay-differential system, Arch. Rational Mech. Anal. 10 (1962), 401-426. MR 25 #5260. MR 0141863 (25:5260)
  • [5] J. J. Levin and J. A. Nohel, On a system of integro-differential equations occuring in reactor dynamics, J. Math. Mech. 9 (1960), 347-368. MR 22 #8301. MR 0117522 (22:8301)
  • [6] K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 31 #5054. MR 0180824 (31:5054)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 45M05

Retrieve articles in all journals with MSC: 45M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0308712-2
Keywords: Volterra integrodifferential systems, infinite lag, exponential asymptotic stability, logarithmic growth, solutions in $ {L^2}[0,\infty ),({C_0})$ semigroup, resolvent of $ ({C_0})$ semigroup, Hardy class $ {H^2}$
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society