Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Actions of groups of order $ pq$


Author: Connor Lazarov
Journal: Trans. Amer. Math. Soc. 173 (1972), 215-230
MSC: Primary 57D85
DOI: https://doi.org/10.1090/S0002-9947-1972-0309131-5
MathSciNet review: 0309131
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the bordism group of stably complex $ G$-manifolds in the case where $ G$ is a metacyclic group of order $ pq$ and $ p$ and $ q$ are distinct primes. This bordism group is a module over the complex bordism ring and we compute the projective dimension of this module. We develop some techniques necessary for the study of this module in case $ G$ is a more general metacyclic group.


References [Enhancements On Off] (What's this?)

  • [1] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750. MR 0176478 (31:750)
  • [2] -, Maps of odd period, Ann. of Math. (2) 84 (1966), 132-156. MR 34 #3587. MR 0203738 (34:3587)
  • [3] -, Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc. 70 (1964), 574-579. MR 29 #1653. MR 0164356 (29:1653)
  • [4] P. E. Conner and Larry Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. No. 37 (1969), 117-221. MR 42 #2473. MR 0267571 (42:2473)
  • [5] Charles W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962. MR 26 #2519. MR 0144979 (26:2519)
  • [6] Peter Landweber, Equivariant bordism of cyclic groups, Proc. Amer. Math. Soc. 31 (1972), 564-570. MR 0296969 (45:6028)
  • [7] -, Cobordism and classifying spaces, Proc. Sympos. Pure Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1971, pp. 125-129. MR 0321085 (47:9618)
  • [8] Connor Lazarov, Actions of metacyclic groups (to appear).
  • [9] S. Mac Lane, Homology, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
  • [10] R. E. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 291-316. MR 42 #8521. MR 0273644 (42:8521)
  • [11] Arthur Wasserman, Cobordism of group actions, Bull. Amer. Math. Soc. 72 (1966), 866-869. MR 37 #6943. MR 0231388 (37:6943)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D85

Retrieve articles in all journals with MSC: 57D85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0309131-5
Keywords: Bordism theory of actions, actions of metacyclic groups, adjacent families of subgroups, projective dimension of bordism modules, equivariant bordism, cohomology of groups, actions of cyclic groups, induced representations
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society