Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Iterated fine limits and iterated nontangential limits

Author: Kohur Gowrisankaran
Journal: Trans. Amer. Math. Soc. 173 (1972), 71-92
MSC: Primary 31D05; Secondary 31B25
MathSciNet review: 0311927
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\Omega _k},k = 1{\text{ to }}n$, be harmonic spaces of Brelot and $ {u_k} > 0$ harmonic functions on $ {\Omega _k}$. For each $ w$ in a class of multiply superharmonic functions it is shown that the iterated fine limits of $ [w/{u_1} \cdots {u_n}]$ exist up to a set of measure zero for the product of the canonical measures corresponding to $ {u_k}$ and are independent of the order of iteration. This class contains all positive multiply harmonic functions on the product of $ {\Omega _k}$'s. For a holomorphic function $ f$ in the Nevanlinna class of the polydisc $ {U^n}$, it is shown that the $ n$th iterated fine limits exist and equal almost everywhere on $ {T^n}$ the $ n$th iterated nontangential limits of $ f$, for any fixed order of iteration. It is then deduced that, with the exception of a set of measure zero on $ {T^n}$, the absolute values of the different iterated limits of $ f$ are equal. It is also shown that the $ n$th iterated nontangential limits are equal almost everywhere on $ {T^n}$ for any $ f$ in $ {N_1}({U^n})$.

References [Enhancements On Off] (What's this?)

  • [1] M. Brelot, Lectures on potential theory, Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy. Lectures on Mathematics, vol. 19, Tata Institute of Fundamental Research, Bombay, 1960. MR 0118980
  • [2] -, Séminaire de théorie du potentiel. II, Institut Henri Poincaré, Paris, 1958.
  • [3] M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 395–415 (French). MR 0196107
  • [4] A. P. Caledrón and A. Zygmund, Contributions to Fourier analysis, Ann. of Math. Studies, no. 25, Princeton Univ. Press, Princeton, N. J., 1950, pp. 145-165. MR 12, 255.
  • [5] C. Constantinescu and A. Cornea, Über das Verhalten der analytischen Abbildungen Riemannscher Flachen auf dem idealen Rand von Martin, Nagoya Math. J. 17 (1960), 1–87 (German). MR 0123703
  • [6] Kohur Gowrisankaran, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 307–356. MR 0164051
  • [7] Kohur Gowrisankaran, Fatou-Naïm-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 2, 455–467 (English, with French summary). MR 0210917
  • [8] Kohur Gowrisankaran, Multiply harmonic functions, Nagoya Math. J. 28 (1966), 27–48. MR 0209513
  • [9] R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415–571 (French). MR 0139756
  • [10] Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
  • [11] Laurent Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1973. Tata Institute of Fundamental Research Studies in Mathematics, No. 6. MR 0426084
  • [12] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31D05, 31B25

Retrieve articles in all journals with MSC: 31D05, 31B25

Additional Information

Keywords: Polydisc, Nevanlinna class, holomorphic function, nontangential limit, fine limit, minimal boundary, multiply superharmonic functions, Radon measures
Article copyright: © Copyright 1972 American Mathematical Society