Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Some results on parafree groups


Author: Yael Roitberg
Journal: Trans. Amer. Math. Soc. 173 (1972), 315-339
MSC: Primary 20E10
DOI: https://doi.org/10.1090/S0002-9947-1972-0313399-9
MathSciNet review: 0313399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain some theorems concerning parafree groups in certain varieties, which are analogs of corresponding theorems about free groups in these varieties. Our principal results are: (1) A normal subgroup $ N$ of a parafree metabelian group $ P$ of rank $ \geqslant 2$ such that $ N \cdot {\gamma _2}P$ has infinite index in $ P$ is not finitely generated unless it is trivial. (2) If $ x$ and $ y$ are elements of a parafree group $ P$ in any variety containing the variety of all metabelian groups which are independent modulo $ {\gamma _2}P$, then the commutator $ [x,y]$ is not a proper power.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander and R. C. Lyndon, Commutator subgroups of free groups, Amer. J. Math. 77 (1955), 929-931. MR 17, 709. MR 0075204 (17:709a)
  • [2] G. Baumslag, Some aspects of groups with unique roots, Acta Math. 104 (1960), 217-303. MR 23 #A191. MR 0122859 (23:A191)
  • [3] -, Some theorems on the free groups of certain product varieties, J. Combinatorial Theory 2 (1967), 77-99. MR 34 #5902. MR 0206077 (34:5902)
  • [4] -, Groups with the same lower central sequence as a relatively free group. I. The groups, Trans. Amer. Math. Soc. 129 (1967), 308-321. MR 36 #248. MR 0217157 (36:248)
  • [5] -, Groups with the same lower central sequence as a relatively free group. II. Properties, Trans. Amer. Math. Soc. 142 (1969), 507-538. MR 39 #6959. MR 0245653 (39:6959)
  • [6] G. Baumslag, B. H. Neumann, H. Neumann, and P. M. Neumann, On varieties generated by a finitely generated group, Math. Z. 86 (1964), 93-122. MR 30 #138. MR 0169895 (30:138)
  • [7] P. Hall, Some word-problems, J. London Math. Soc. 33 (1958), 482-496. MR 21 #1331. MR 0102540 (21:1331)
  • [8] A. Karrass, W. Magnus and D. Solitar, Elements of finite order in groups with a single defining relation, Comm. Pure Appl. Math. 13 (1960), 57-66. MR 23 #A1696. MR 0124384 (23:A1696)
  • [9] H. Neumann, Varieties of groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, New York, 1967. MR 35 #6734. MR 0215899 (35:6734)
  • [10] O. Schreier, Die Untergruppen der freien Gruppen, Abh. Math. Sem. Univ. Hamburg 5 (1928), 161-183.
  • [11] J.-P. Serre, Lie algebras and Lie groups, Benjamin, New York, 1965. MR 36 #1582. MR 0218496 (36:1582)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20E10

Retrieve articles in all journals with MSC: 20E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0313399-9
Keywords: Parafree groups, varieties of groups, metabelian groups, lower central series, residually nilpotent groups, parabasis, left normed basic commutators
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society