Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A new class of functions of bounded index


Authors: S. M. Shah and S. N. Shah
Journal: Trans. Amer. Math. Soc. 173 (1972), 363-377
MSC: Primary 30A66
DOI: https://doi.org/10.1090/S0002-9947-1972-0313506-8
MathSciNet review: 0313506
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Entire functions of strongly bounded index have been defined and it is shown that functions of genus zero and having all negative zeros satisfying a one sided growth condition belong to this class.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954. MR 16, 914. MR 0068627 (16:914f)
  • [2] E. C. Francis and J. E. Littlewood, Examples in infinite series with solutions, Deighton, Cambridge, 1953.
  • [3] Fred Gross, Entire functions of bounded index, Proc. Amer. Math. Soc. 18 (1967), 974-980. MR 36 #1649. MR 0218564 (36:1649)
  • [4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1964.
  • [5] Boo Sang Lee and S. M. Shah, On the growth of entire functions of bounded index, Indiana Univ. Math. J. 20 (1970/71), 81-87. MR 41 #3766. MR 0259124 (41:3766)
  • [6] Benjamin Lepson, Differential equations of infinite order hyperdirichlet series and entire functions of bounded index, Proc. Sympos. Pure Math., vol. 11, Amer. Math. Soc., Providence, R. I., 1968, pp. 298-307. MR 38 #6069. MR 0237788 (38:6069)
  • [7] Walter Pugh and S. M. Shah, On the growth of entire functions of bounded index, Pacific J. Math. 33 (1970), 191-201. MR 41 #3767. MR 0259125 (41:3767)
  • [8] S. M. Shah, Entire functions of bounded index, Proc. Amer. Math. Soc. 19 (1968), 1017-1022. MR 38 #6070. MR 0237789 (38:6070)
  • [9] -, Entire functions satisfying a linear differential equation, J. Math. Mech. 18 (1968/69), 131-136. MR 37 #2994. MR 0227410 (37:2994)
  • [10] -, On entire functions of bounded index whose derivatives are of unbounded index, J. London Math. Soc. (2) 4 (1971), 127-139. MR 0322171 (48:534)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A66

Retrieve articles in all journals with MSC: 30A66


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0313506-8
Keywords: Order and lower order of an entire function, exponential type, bounded index
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society