Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Automorphisms of $ \omega \sb{1}$-trees


Author: Thomas J. Jech
Journal: Trans. Amer. Math. Soc. 173 (1972), 57-70
MSC: Primary 02K30
MathSciNet review: 0347605
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The number of automorphisms of a normal $ {\omega _1}$-tree $ T$, denoted by $ \sigma (T)$, is either finite or $ {2^{{\aleph _0}}} \leqslant \sigma (T) \leqslant {2^{{\aleph _1}}}$. Moreover, if $ \sigma (T)$ is infinite then $ \sigma {(T)^{{\aleph _0}}} = \sigma (T)$. Moreover, if $ T$ has no Suslin subtree then $ \sigma (T)$ is finite or $ \sigma (T) = {2^{{\aleph _0}}}$ or $ \sigma (T) = {2^{{\aleph _1}}}$. It is consistent that there is a Suslin tree with arbitrary precribed $ \sigma (T)$ between $ {2^{{\aleph _0}}}$ and $ {2^{{\aleph _1}}}$, subject to the restriction above; e.g. $ {2^{{\aleph _0}}} = {\aleph _1},{2^{{\aleph _1}}} = {\aleph _{324}}$ and $ \sigma (T) = {\aleph _{17}}$. We prove related results for Kurepa trees and isomorphism types of trees. We use Cohen's method of forcing and Jensen's techniques in $ L$.


References [Enhancements On Off] (What's this?)

  • [1] Haim Gaifman and E. P. Specker, Isomorphism types of trees, Proc. Amer. Math. Soc. 15 (1964), 1–7. MR 0168484, 10.1090/S0002-9939-1964-0168484-2
  • [2] Tomáš Jech, Non-provability of Souslin’s hypothesis, Comment. Math. Univ. Carolinae 8 (1967), 291–305. MR 0215729
  • [3] Thomas J. Jech, Trees, J. Symbolic Logic 36 (1971), 1–14. MR 0284331
  • [4] -, Isomorphism types of trees, Preliminary Report, Notices Amer. Math. Soc. 17 (1970), 673. Abstract #70T-E39.
  • [5] R. B. Jensen, Souslin's hypothesis is incompatible with $ V = L$, Notices Amer. Math. Soc. 15 (1968), 935. Abstract #68T-E31.
  • [6] -, Automorphism properties of Souslin continua, Notices Amer. Math. Soc. 16 (1969), 576. Abstract #69T-E24.
  • [7] -, Souslin's hypothesis is compatible with CH (mimeographed).
  • [8] -, Some combinatorial properties of $ L$ and $ V$ (mimeographed).
  • [9] D. Kurepa, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgrade 4 (1935), 1-138.
  • [10] Edward Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), 127–143 (French). MR 0021680
  • [11] Jack Silver, The independence of Kurepa’s conjecture and two-cardinal conjectures in model theory, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 383–390. MR 0277379
  • [12] R. M. Solovay, to be published.
  • [13] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Suslin's problem (mimeographed).
  • [14] D. H. Stewart, M. Sc. Thesis, Bristol, 1966.
  • [15] S. Tennenbaum, Souslin’s problem, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 60–63. MR 0224456

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 02K30

Retrieve articles in all journals with MSC: 02K30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0347605-1
Keywords: Normal $ {\omega _1}$-tree, Suslin tree, Suslin continuum, Kurepa tree, rigid tree
Article copyright: © Copyright 1972 American Mathematical Society