Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Equicontinuity and indivisibility in transformation groups


Author: Ping-fun Lam
Journal: Trans. Amer. Math. Soc. 174 (1972), 399-424
MSC: Primary 54H20
DOI: https://doi.org/10.1090/S0002-9947-1972-0309090-5
MathSciNet review: 0309090
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A notion called indivisibility for transformation groups is studied in some detail. The proofs of some theorems announced in [10] are given. Certain types of nonequicontinuous sets which do not disconnect their metric continuum phase spaces and which were not known to exist previously are exhibited.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Éléments de mathématique. Part. 1. Les structures fondamentales de l'analyse. Livre III: Topologie générale, Actualités Sci. Indust., no. 1029, Hermann, Paris, 1947; English transl., Addison-Wesley, Reading, Mass., 1966. MR 9, 261; MR 34 #5044b.
  • [2] M. K. Fort, Jr., The embedding of homeomorphisms in flows, Proc. Amer. Math. Soc. 6 (1955), 960-967. MR 18, 326. MR 0080911 (18:326b)
  • [3] W. H. Gottschalk, Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336-351. MR 20 #6484. MR 0100048 (20:6484)
  • [4] W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R. I., 1955. MR 17, 650. MR 0074810 (17:650e)
  • [5] W. J. Gray and F. A. Roberson, On the near equicontinuity of transformation groups, Proc. Amer. Math. Soc. 23 (1969), 59-63. MR 39 #7583. MR 0246279 (39:7583)
  • [6] T. Homma and S. Kinoshita, On homeomorphisms which are regular except for a finite number of points, Osaka Math. J. 7 (1955), 29-38. MR 16, 1140. MR 0070159 (16:1140a)
  • [7] S. K. Kaul, On almost regular homeomorphisms, Canad. J. Math. 20 (1968), 1-6. MR 36 #5908. MR 0222858 (36:5908)
  • [8] J. L. Kelley, General topology, Van Nostrand, New York, 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [9] K. Kuratowski, Topologie, Vols. 1, 2, PWN, Warsaw, 1958, 1961; English transl., PWN, Warsaw; Academic Press, New York, 1966, 1968. MR 19, 873; MR 24 #A2958; MR 36 #839; MR 41 #4467. MR 0259835 (41:4467)
  • [10] P.-F. Lam, On a theorem of B. von Kérekjárto, Bull. Amer. Math. Soc. 77 (1971), 230-234. MR 42 #2459. MR 0267557 (42:2459)
  • [11] -, Almost equicontinuous transformation groups, Trans. Amer. Math. Soc. (to appear). MR 0377957 (51:14126)
  • [12] N. G. Markley, Transitive homeomorphisms of the circle, Math. Systems Theory 2 (1968), 247-249. MR 38 #5198. MR 0236905 (38:5198)
  • [13] W. Sierpinski, General topology, Math. Expositions, no. 7, Univ. of Toronto Press, Toronto, 1952. MR 14, 394. MR 0050870 (14:394f)
  • [14] L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, Holt, Rinehart and Winston, New York, 1970. MR 42 #1040. MR 0266131 (42:1040)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54H20

Retrieve articles in all journals with MSC: 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0309090-5
Keywords: Equicontinuity, upper semicontinuous function, co-meager set, minimal set, one-point compactification, scattered set, semicontinuum, zero-dimensional set, Peano curve
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society