Topologies of closed subsets
Author:
Louis Narens
Journal:
Trans. Amer. Math. Soc. 174 (1972), 5576
MSC:
Primary 54B99; Secondary 02H25
MathSciNet review:
0312450
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper various topologies on closed subsets of a topological space are considered. The interrelationships between these topologies are explored, and several applications are given. The methods of proof as well as some intrinsic definitions assume a familiarity with A. Robinson's nonstandard analysis. E. Michael (Topologies of spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152182), K. Kuratowski (Topology, Vols. I and II, Academic Press, New York, 1968), L. Vietoris (Berichezweiter Ordnung, Monatsh. Math.Phys. 33 (1923), 4962), and others have considered methods of putting topologies on closed subsets of a topological space. These topologies have the property that if the underlying topological space is compact then the topology of closed subsets is also compact. In general, however, these topologies of closed subsets are not compact. In this paper, a topology of closed subsets of a topological space is constructed that is always compact. This topology is called the compact topology and has many pleasant features. For closed subsets of compact Hausdorff spaces, this topology agrees with Vietoris' topology. For arbitrary spaces, there are interesting connections between the compact topology and topological convergence of subsets, including generalized versions of the BolzanoWeierstrass theorem.
 [1]
Leon
Henkin, Completeness in the theory of types, J. Symbolic Logic
15 (1950), 81–91. MR 0036188
(12,70b)
 [2]
Szetsen
Hu, Elements of general topology, HoldenDay, Inc., San
Francisco, Calif.LondonAmsterdam, 1964. MR 0177380
(31 #1643)
 [3]
K.
Kuratowski, Topology. Vol. I, New edition, revised and
augmented. Translated from the French by J. Jaworowski, Academic Press, New
YorkLondon; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751
(36 #840)
 [4]
, Topology. Vol. 2, Academic Press, New York; PWN, Warsaw, 1968. MR 41 #4467.
 [5]
W.
A. J. Luxemburg, A general theory of monads, Applications of
Model Theory to Algebra, Analysis, and Probability (Inte rnat. Sympos.,
Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969,
pp. 18–86. MR 0244931
(39 #6244)
 [6]
, A new approach to the theory of monads, Technical Report no. 1, Nonr N0001466C0009A04 (Nr041339) for Office of Naval Research, 1967.
 [7]
Ernest
Michael, Topologies on spaces of
subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 0042109
(13,54f), http://dx.doi.org/10.1090/S00029947195100421094
 [8]
Abraham
Robinson, Nonstandard analysis, NorthHolland Publishing Co.,
Amsterdam, 1966. MR 0205854
(34 #5680)
 [9]
Abraham
Robinson, On some applications of model theory to algebra and
analysis, Rend. Mat. e Appl. (5) 25 (1966),
562–592. MR 0219406
(36 #2489)
 [10]
W. Sierpiński, Sur l'inversion du théorème de BolzanoWeierstrass généralisé, Fund. Math. 34 (1947), 155156. MR 9, 83.
 [11]
Leopold
Vietoris, Kontinua zweiter Ordnung, Monatsh. Math. Phys.
33 (1923), no. 1, 49–62 (German). MR
1549268, http://dx.doi.org/10.1007/BF01705590
 [12]
T. Ważewski, Sur les points de division, Fund. Math. 4 (1923), 215245.
 [13]
Gordon
Thomas Whyburn, Analytic Topology, American Mathematical
Society Colloquium Publications, v. 28, American Mathematical Society, New
York, 1942. MR
0007095 (4,86b)
 [14]
C. Zarankiewicz, Sur un continu singulier, Fund. Math. 9 (1927), 125171.
 [1]
 L. Henkin, Completeness in the theory of types, J. Symbolic Logic 15 (1950), 8191. MR 12, 70. MR 0036188 (12:70b)
 [2]
 S. T. Hu, Elements of general topology, HoldenDay, London, 1964. MR 31 #1643. MR 0177380 (31:1643)
 [3]
 K. Kuratowski, Topology. Vol. 1, Academic Press, New York; PWN, Warsaw, 1966. MR 36 #840. MR 0217751 (36:840)
 [4]
 , Topology. Vol. 2, Academic Press, New York; PWN, Warsaw, 1968. MR 41 #4467.
 [5]
 W. A. J. Luxemburg, A general theory of monads, Internat. Sympos. Applications of Model Theory to Algebra, Analysis, and Probability (Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 1886. MR 39 #6244. MR 0244931 (39:6244)
 [6]
 , A new approach to the theory of monads, Technical Report no. 1, Nonr N0001466C0009A04 (Nr041339) for Office of Naval Research, 1967.
 [7]
 E. A. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152182. MR 13, 54. MR 0042109 (13:54f)
 [8]
 A. Robinson, Nonstandard analysis, NorthHolland, Amsterdam, 1966. MR 34 #5680. MR 0205854 (34:5680)
 [9]
 , On some applications of model theory to algebra and analysis, Rend. Mat. e Appl. (5) 25 (1966), 562592. MR 36 #2489. MR 0219406 (36:2489)
 [10]
 W. Sierpiński, Sur l'inversion du théorème de BolzanoWeierstrass généralisé, Fund. Math. 34 (1947), 155156. MR 9, 83.
 [11]
 L. Vietoris, Bereiche zweiter Ordnung, Monatsh. Math. und Phys. 33 (1923), 4962. MR 1549268
 [12]
 T. Ważewski, Sur les points de division, Fund. Math. 4 (1923), 215245.
 [13]
 G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1942. MR 4, 86. MR 0007095 (4:86b)
 [14]
 C. Zarankiewicz, Sur un continu singulier, Fund. Math. 9 (1927), 125171.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
54B99,
02H25
Retrieve articles in all journals
with MSC:
54B99,
02H25
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002994719720312450X
PII:
S 00029947(1972)0312450X
Keywords:
Nonstandard analysis,
topologies on spaces of sets,
topological convergence of sequences of sets,
generalized BolzanoWeierstrass theorem
Article copyright:
© Copyright 1972
American Mathematical Society
