Normed convex processes

Author:
Stephen M. Robinson

Journal:
Trans. Amer. Math. Soc. **174** (1972), 127-140

MSC:
Primary 46B99; Secondary 47A99

MathSciNet review:
0313769

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that several well-known results about continuous linear operators on Banach spaces can be generalized to the wider class of convex processes, as defined by Rockafellar. In particular, the open mapping theorem and the standard bound for the norm of the inverse of a perturbed linear operator can be extended to convex processes. In the last part of the paper, these theorems are exploited to prove results about the stability of solution sets of certain operator inequalities and equations in Banach spaces. These results yield quantitative bounds for the displacement of the solution sets under perturbations in the operators and/or in the right-hand sides. They generalize the standard results on stability of unique solutions of linear operator equations.

**[1]**Adi Ben-Israel,*On error bounds for generalized inverses*, SIAM J. Numer. Anal.**3**(1966), 585–592. MR**0215504****[2]**C. Berge,*Topological spaces*, Macmillan, New York, 1963.**[3]**David Gale,*The theory of linear economic models*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1960. MR**0115801****[4]**Alan J. Hoffman,*On approximate solutions of systems of linear inequalities*, J. Research Nat. Bur. Standards**49**(1952), 263–265. MR**0051275****[5]**L. V. Kantorovič and G. P. Akilov,*Funktsionalnyi analiz v normirovannykh prostranstvakh*, Gosudarstv. Izdat. Fis.-Mat. Lit., Moscow, 1959 (Russian). MR**0119071****[6]**John L. Kelley,*General topology*, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. MR**0070144****[7]**Stephen M. Robinson,*Bounds for error in the solution set of a perturbed linear program*, Linear Algebra and Appl.**6**(1973), 69–81. MR**0317760****[8]**Stephen M. Robinson,*Extension of Newton’s method to nonlinear functions with values in a cone*, Numer. Math.**19**(1972), 341–347. MR**0314259****[9]**R. Tyrrell Rockafellar,*Monotone processes of convex and concave type*, Memoirs of the American Mathematical Society, No. 77, American Mathematical Society, Providence, R.I., 1967. MR**0225231****[10]**-,*Convex analysis*, Princeton Univ. Press, Princeton, N. J., 1970.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46B99,
47A99

Retrieve articles in all journals with MSC: 46B99, 47A99

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1972-0313769-9

Article copyright:
© Copyright 1972
American Mathematical Society