Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Semi-$ p$-functions


Author: J. F. C. Kingman
Journal: Trans. Amer. Math. Soc. 174 (1972), 257-273
MSC: Primary 26A51; Secondary 60J25
DOI: https://doi.org/10.1090/S0002-9947-1972-0325877-7
MathSciNet review: 0325877
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalisation of the theory of p-functions which applies, for instance, to the diagonal elements of one-parameter semigroups of infinite matrices which satisfy no boundedness condition.


References [Enhancements On Off] (What's this?)

  • [1] K. L. Chung, Markov chains with stationary transition probabilities, Die Grundlehren der math. Wissenschaften, Band 104, Springer-Verlag, Berlin and New York, 1960. MR 22 #7176. MR 0116388 (22:7176)
  • [2] A. G. Cornish, Some properties of semigroups of non-negative matrices and their resolvents, Proc. London Math. Soc. 23 (1971), 643-667. MR 0292175 (45:1262)
  • [3] E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664. MR 0089373 (19:664d)
  • [4] W. B. Jurkat, On semi-groups of positive matrices. I, II, Scripta Math. 24 (1959), 123-131, 207-218. MR 22 #12563. MR 0121833 (22:12563)
  • [5] -, On the analytical structure of semi-groups of positive matrices, Math. Z. 73 (1960), 346-365. MR 23 #A524. MR 0123195 (23:A524)
  • [6] D. G. Kendall, Delphic semi-groups, infinitely divisible regenerative phenomena, and the arithmetic of p-functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 163-195. MR 37 #5320. MR 0229746 (37:5320)
  • [7] J. F. C. Kingman, The exponential decay of Markov transition probabilities, Proc. London Math. Soc. (3) 13 (1963), 337-358. MR 27 #1995. MR 0152014 (27:1995)
  • [8] -, A continuous time analogue of the theory of recurrent events, Bull. Amer. Math. Soc. 69 (1963), 268-272. MR 26 #7044. MR 0149559 (26:7044)
  • [9] -, The stochastic theory of regenerative events, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 180-224. MR 32 #1758. MR 0184285 (32:1758)
  • [10] -, Some further analytical results in the theory of regenerative events, J. Math. Anal. Appl. 11 (1965), 422-433. MR 31 #5237. MR 0181007 (31:5237)
  • [11] -, An approach to the study of Markov processes (with discussion), J. Roy. Statist. Soc. Ser. B 28 (1966), 417-447. MR 35 #1085. MR 0210191 (35:1085)
  • [12] -, Markov transition probabilities. V, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 89-103. MR 0295438 (45:4504)
  • [13] ($ ^1$) -, Regenerative phenomena, Wiley, London, 1972.
  • [14] A. N. Kolmogorov, On the differentiability of the transition probabilities in stationary Markov processes with a denumerable number of states, Uc. Zap. Moskov. Gos. Univ. 148 Mat. 4 (1951), 53-59. (Russian) MR 14, 295. MR 0050210 (14:295b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A51, 60J25

Retrieve articles in all journals with MSC: 26A51, 60J25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1972-0325877-7
Article copyright: © Copyright 1972 American Mathematical Society

American Mathematical Society