QUASI-COMPLEMENTED ALGEBRAS

BY

T. HUSAIN(1) AND PAK-KEN WONG(2)

ABSTRACT. In this paper we introduce a class of algebras which we call quasi-complemented algebras. A structure and representation theory is developed. We also study the uniformly continuous quasi-complementors on B^*-algebras.

1. Introduction. Complemented Banach algebras were introduced in [11] and have been studied by various authors. The present work is an attempt to generalize these algebras.

The concept of quasi-complemented algebra is introduced in §2. Let A be a semisimple quasi-complemented algebra in which every maximal modular right ideal is closed. We show that the socle of A is dense in A. This enables us to establish a structure theorem for A if A has the property $x \in \text{cl}(xA)$ for all $x \in A$.

We also give a representation theorem for a primitive Banach algebra in which every maximal closed right ideal is modular and $x \in \text{cl}(xA)$ for all $x \in A$. In §5, we study quasi-complementors induced by given quasi-complementors.

We introduce the concept of continuous quasi-complementors in §6. Then we show that if A is a B^*-algebra which has no minimal left ideals of dimension less than three, then every uniformly continuous quasi-complementor on A is a complementor.

As we observed above, many fundamental properties of a complemented algebra hold for a quasi-complemented algebra. However a quasi-complemented algebra, in general, is not complemented as shown by the examples in §2.

2. Notation and preliminaries. For any subset S in an algebra A, let $\ell(S)$ and $r(S)$ denote the left and right annihilators of S in A, respectively. Let A be a topological algebra. Then A is called an annihilator algebra if, for every closed left ideal J and for every closed right ideal R, we have $r(J) = \{0\}$ if and only if $J = A$ and $\ell(R) = \{0\}$ if and only if $R = A$. If $\ell(r(J)) = J$ and $r(\ell(R)) = R$, then A is called a dual algebra.

Received by the editors December 16, 1971.

AMS (MOS) subject classifications (1969). Primary 4650; Secondary 4655.

Key words and phrases. Quasi-complemented algebras, annihilator and dual algebra, complemented algebra, continuous and uniformly continuous quasi-complementors.

(1) This work was supported by a N.R.C. grant.

(2) The second author was supported by a postdoctoral fellowship at McMaster University.

Copyright © 1973, American Mathematical Society
Let \(A \) be a topological algebra and let \(L_r \) be the set of all closed right ideals in \(A \). Then \(A \) is called a right quasi-complemented algebra if there exists a mapping \(q: R \rightarrow R^q \) of \(L_r \) into itself having the following properties:

(2.1) \(R \cap R^q = (0) \) (\(R \in L_r \));
(2.2) \((R^q)^q = R \) (\(R \in L_r \));
(2.3) if \(R_1 \supset R_2 \), then \(R_2^q \supset R_1^q \) (\(R_1, R_2 \in L_r \)).

We call the mapping \(q \) a right quasi-complementor on \(A \) and \(R^q \) the right quasi-complement of \(R \) in \(A \). It is clear that the concept of quasi-complementation extends that of orthogonal complementation when \(A \) is a Hilbert algebra.

A right quasi-complemented algebra \(A \) is called a right complemented algebra if it satisfies:

(2.4) \(R + R^q = A \) (\(R \in L_r \)).

In this case, the mapping \(q \) is called a right complementor on \(A \) (see [11, p. 615, Definition 1]). A right quasi-complemented algebra may not be right complemented as shown by the following examples:

Example 2.1. Let \(B \) and \(p \) be given in [1, p. 396, Example 1]. Then \(p \) is a right quasi-complementor on \(B \). But \(p \) is not a right complementor. However \(B \) is a right complemented algebra under the right complementor \(R \rightarrow l(R)^* \) (see [3, p. 463, Theorem 3.6]).

Example 2.2. Let \(G \) be the compact group of real numbers mod 1 and \(A = L_p(G, \mu) \), where \(1 < p < \infty \) and \(p \neq 2 \). It is well known that \(A \) is a commutative dual \(A^* \)-algebra which is not an ideal in the completion of its auxiliary norm (see [9, p. 35]). By Theorem 6.5, the mapping \(q: R \rightarrow l(R)^* \) is the only right quasi-complementor on \(A \). It follows from [4, p. 233, Theorem 3.8] and [9, p. 35, Theorem 23] that \(p \) is not a right complementor on \(A \). Since \(A \) has a unique right quasi-complementor, \(A \) is not a right complemented algebra.

Analogously we define left quasi-complemented algebras. In this paper, we limit our attention to right quasi-complemented algebras with the remark that similar properties hold for left quasi-complemented algebras. From now on a quasi-complemented (resp. complemented) algebra will always mean a right quasi-complemented (resp. right complemented) algebra.

Let \(X \) be a topological space and \(S \) a subset in \(X \). Then \(\text{cl}(S) \) will denote the closure of \(S \) in \(X \).

In this paper, all algebras and linear spaces under consideration are over the complex field \(C \). Definitions not explicitly given are taken from Rickart's book [10].

We shall need the following result.

Lemma 2.1. Let \(A \) be a semisimple dual algebra in which every maximal modular right ideal is closed. Then for each nonzero closed right ideal \(R \) of \(A \),
we have \(R = \text{cl}(\sum e_\alpha A) \), where \(\{e_\alpha\} \) is the family of all minimal idempotents of \(A \) contained in \(R \).

Proof. By [5, p. 569, Theorem 4.2], \(\{e_\alpha\} \) is not an empty set. Let \(J = \text{cl}(\sum e_\alpha A) \). By a similar argument in the proof of [5, p. 570, Theorem 5.1], we have \(\mathcal{I}(J)R = (0) \) and so \(R \subseteq \mathcal{I}(\mathcal{I}(J)) = J \). Therefore \(R = J \). This completes the proof.

3. A structure theorem.

Lemma 3.1. Let \(A \) be a quasi-complemented algebra with a quasi-complementor \(q \). Then

(i) For any family of closed right ideals \(\{R_\lambda\} \) in \(A \), we have \(\text{cl}(\sum R_\lambda) = (\bigcap R_\lambda^q)^q \).

(ii) For every closed right ideal \(R \) of \(A \), \(R + R^q \) is dense in \(A \).

Proof. (i) follows from the proof of [3, p. 461, Lemma 2.1].

(ii) Since \(A^q = A^q \cap A = (0) \), we have \((0)^q = A \). Therefore it follows from (i) that

\[
\text{cl}(R + R^q) = (R^q \cap R)^q = (0)^q = A.
\]

Therefore \(R + R^q \) is dense in \(A \).

Corollary 3.2. A finite dimensional quasi-complemented normed algebra is a complemented algebra.

Proof. This follows easily from Lemma 3.1 (ii).

Lemma 3.3. Let \(A \) be a semisimple quasi-complemented algebra in which every maximal modular right ideal is closed. Then the socle of \(A \) is dense in \(A \).

Proof. Let \(\{R_\lambda : \lambda \in \Lambda\} \) be the family of all maximal modular right ideals of \(A \). By the semisimplicity of \(A \), \(\bigcap R_\lambda = (0) \) and therefore by Lemma 3.1, \(A = \text{cl}(\sum R_\lambda^q) \). Clearly \(R_\lambda^q \neq (0) \); for otherwise \(R_\lambda = (R_\lambda^q)^q = (0)^q = A \), a contradiction. Since \(R_\lambda + R_\lambda^q \) is a right ideal which contains \(R_\lambda \) properly, it follows that \(R_\lambda + R_\lambda^q = A \). Therefore by Lemma 3.1 in [7], \(R_\lambda^q \) is a minimal right ideal. Hence \(R_\lambda^q \) is contained in the socle \(S \) of \(A \) and therefore \(S \) is dense in \(A \). This completes the proof.

Lemma 3.4. Let \(A \) be a semisimple quasi-complemented algebra such that \(x \in \text{cl}(xA) \) for all \(x \in A \). Then each closed two-sided ideal \(J \) in \(A \) is a quasi-complemented algebra.

Proof. Let \(R \) be a closed right ideal in \(J \). Since \(\mathcal{I}(J) = r(J) \) (see [14, p. 37]) and \(J^q J \subseteq J \cap J^q = (0) \), it follows that \(J^q \subseteq \mathcal{I}(J) = r(J) \neq (0) \). Therefore
by the proof of [10, p. 99, Lemma (2.8.11)], \(R \) is a closed right ideal in \(A \). Let \(q \) be a given quasi-complementor on \(A \) and let \(R^q_J = R^q \cap J \). We show that \(q_J \) is a quasi-complementor on \(J \). By Lemma 3.1, we have

\[
(R^q_J)^q_J = (R^q \cap J)^q \cap J = \text{cl}(R + J^q) \cap J.
\]

Let \(x \in (R^q_J)^q_J \) and write \(x = \lim \alpha (a_\alpha + \beta_\alpha) \) with \(a_\alpha \in R \) and \(b_\alpha \in J^q \). Since \(x \in J \), it follows from Lemma 3.1 that

\[
x_A = x\text{cl}(J + J^q) \subseteq \text{cl}(x(J + J^q)) = \text{cl}(x_J).
\]

Since \(x \in \text{cl}(x_A) \), we have \(x \in \text{cl}(x_J) \). Therefore we can write \(x = \lim \beta xy_\beta \) with \(y_\beta \in J \). Since

\[
xy_\beta = \lim \alpha (a_\alpha y_\beta + b_\alpha y_\beta) = \lim \alpha a_\alpha y_\beta,
\]

it follows that \(xy_\beta \in R \) and consequently \(x \in R \). Therefore \((R^q_J)^q_J \subseteq R \). Since \(R^q \cap J \subseteq R^q \), we have \(R \subseteq (R^q_J)^q_J \) and hence \((R^q_J)^q_J = R \). It is easy to see that the mapping \(q_J \) satisfies the conditions (2.1) and (2.3). Therefore it is a quasi-complementor on \(J \) and this completes the proof.

We shall need the following result in \(\S 7 \).

Corollary 3.5. Let \(A, J \) and \(q_J \) be as in Lemma 3.4. If \(M \) is a closed right ideal in \(A \), then \(M^q \cap J = (M \cap J)^q_J \).

Proof. By Lemma 3.1, we have

\[
(M^q \cap J)^q_J = (M^q \cap J)^q \cap J = \text{cl}(M + J^q) \cap J.
\]

Hence by the proof of Lemma 3.4, we have \((M^q \cap J)^q_J \subseteq M \cap J \) and so \(M^q \cap J \subseteq (M \cap J)^q_J \). Since \(M \cap J \subseteq M \), it follows that \((M \cap J)^q_J \supseteq M^q \cap J \). Hence \(M^q \cap J = (M \cap J)^q_J \).

Now we have the following structure theorem.

Theorem 3.6. Let \(A \) be a semisimple quasi-complemented algebra in which every maximal modular right ideal is closed and \(x \) belongs to \(\text{cl}(xA) \) for all \(x \in A \). Then \(A \) is the direct topological sum of its minimal closed two-sided ideals, each of which is a simple quasi-complemented algebra.

Proof. By Lemma 3.3, the socle of \(A \) is dense in \(A \). Therefore by [14, p. 31, Lemma 3.11], \(A \) is the topological direct sum of its minimal closed two-sided ideals. By Lemma 3.4, each minimal closed two-sided ideal of \(A \) is a quasi-complemented algebra and this completes the proof.

Remark. Let \(A \) be an algebra. The condition that \(x \in \text{cl}(xA) \) for all \(x \in A \) is automatically satisfied if \(A \) has an approximate identity or \(A \) is a semisimple complemented algebra. Also, if \(A \) is a semisimple dual algebra, it has this property.
4. A representation theorem. The following lemma is implicit in [2, p. 40, Proposition 1].

Lemma 4.1. Let A be a semisimple Banach algebra and I a minimal left ideal in A. Then

(i) For each closed right ideal R in A, $RI = R \cap I$.

(ii) For each closed subspace E in I, $E = \text{cl}(EA) \cap I$.

Proof. (i). We can write $I = Ae$, where e is a minimal idempotent of A (see [14, p. 37]). Let R be a closed right ideal in A and let $x \in R \cap I$. Since $x = xe \in RI$, we have $R \cap I \subseteq RI$. But $RI \subseteq R \cap I$ and so $RI = R \cap I$. This proves (i).

(ii) Let E be a closed subspace in I and let $R = \text{cl}(EA)$. Since $Ee = E$, we have $E \subseteq R \cap I$. It follows from (i) that

$$R \cap I = \text{cl}(EA)I \subseteq E(eAe) = Ee = E.$$

Therefore $E = \text{cl}(EA) \cap I$ and this completes the proof.

Let A be a primitive quasi-complemented Banach algebra and I a minimal left ideal of A. Then $I = Ae$ for some minimal idempotent e of A. By [10, p. 68, Corollary (2.4.16)], the left regular representation $a \mapsto T_a$ of A is a faithful, continuous, strictly dense representation on I. Let $A' = \{T_a : a \in A\}$. Then by [10, p. 67, Theorem (2.4.12)], the image of the socle of A is the set of all operators of finite rank in A'. Since by Lemma 3.3, the socle of A is dense in A, it follows that A is a simple algebra (see [10, p. 65]).

Lemma 4.2. Let A be a primitive Banach algebra with a quasi-complementor q such that $x \in \text{cl}(xA)$ for all $x \in A$. For each closed subspace E in I, let $E' = [\text{cl}(EA)]^q \cap I$. Then an inner product (x, y) can be introduced in I having the following properties:

(i) I becomes a Hilbert space under (x, y).

(ii) The norm $|x| = (x, x)^{1/2}$ is equivalent to the given norm $\|x\|$ in I.

(iii) If A is infinite-dimensional, then E' is the orthogonal complement of E in I.

Proof. Let $R = [\text{cl}(EA)]^q$. Since A is a simple algebra and since IA is a two-sided ideal in A, IA is dense in A. Let $x \in R$. Then

$$xA = x \text{cl}(IA) \subseteq \text{cl}(xIA) \subseteq \text{cl}(RIA).$$

Since $x \in \text{cl}(xA)$, it follows that $x \in \text{cl}(RIA)$ and so $R \subseteq \text{cl}(RIA)$. Clearly $R \cap \text{cl}(RIA) \subseteq \text{cl}(RIA)$. Hence $R = \text{cl}(RIA)$. Therefore by Lemma 4.1(i), $R = \text{cl}(R \cap I)A = \text{cl}(E'A)$. Hence it follows from Lemma 4.1(ii) that

$$E'' = [\text{cl}(E'A)]^q \cap I = R^q \cap I = \text{cl}(EA) \cap I = E.$$

If $x \in E \cap E'$, then by Lemma 4.1(ii) $x \in \text{cl}(EA) \cap [\text{cl}(EA)]^q$ and so $x = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Therefore $E \cap E' = (0)$. If E_1 and E_2 are closed subspaces of I such that $E_1 \subseteq E_2$, then clearly $E_1 \supset E'$. Therefore by [8, p. 731, Theorem 2], an inner product (x, y) can be introduced in I having properties (i) and (ii). If A is infinite dimensional, then so is I. Hence (iii) follows from [8, p. 729, Theorem 1].

We have the following representation theorem.

Theorem 4.3. Let A be a primitive quasi-complemented Banach algebra in which every maximal closed right ideal is modular and $x \in \text{cl}(xA)$ for all $x \in A$. Then there exists a continuous isomorphism of A onto an algebra A' of completely continuous operators on a Hilbert space. Also A is a dual algebra.

Proof. Let I be a minimal left ideal in A. By Lemma 4.2, I is a Hilbert space. Let $a \rightarrow T_a$ be the left regular representation of A on I and $A' = \{T_a^*; a \in A\}$. Then $a \rightarrow T_a$ is a continuous isomorphism of A onto A'. Letting A' have the given norm of A, we can identify A with A'. Let q be a given quasi-complementor on A and R a proper closed right ideal of A. Since the socle of A is dense in A, by [14, p. 37, Lemma 3.1], R^q contains a minimal right ideal M. It is easy to see that M^q is a maximal closed right ideal and so modular by the assumption. Therefore by [14, p. 38, Lemma 3.3], $I(M^q) \neq (0)$. Since $R \subset M^q$, it follows that $I(R) \neq (0)$. Therefore by the proof of [10, p. 101, Lemma (2.8.20)], A contains all operators of finite rank on I. Hence A is an algebra of completely continuous operators on I (see the proof of [11, p. 657, Theorem 7]). By [10, p. 104, Theorem (2.8.23)] A is an annihilator algebra. Since I is reflexive and since $x \in \text{cl}(xA)$, it follows from the proof of [10, p. 105, Theorem (2.8.27)] that A is a dual algebra.

Corollary 4.4. Let A be a semisimple quasi-complemented Banach algebra in which $x \in \text{cl}(xA)$ for all $x \in A$. Then A is an annihilator algebra if and only if every maximal closed right ideal of A is modular.

Proof. Suppose every maximal closed right ideal of A is modular. Let I be a minimal closed two-sided ideal of A and M a maximal closed right ideal of I. By the proof of Lemma 3.4, M^q is a minimal right ideal of I and A. Therefore $N = (M^q)^q$ is a maximal modular right ideal of A. Since $M^q \oplus N = A$, by [3, p. 462, Lemma 3.1] $N = (1 - e)A$ and $M^q = eA$, where e is a minimal idempotent. Since $e \in I$, $M = (M^q)^q = N \cap I = (1 - e)I$. Therefore M is modular. By the proof of Lemma 3.4, we have $x \in \text{cl}(xl)$ for all $x \in I$. Hence by Theorem 4.3, I is an annihilator algebra and so is A by [10, p. 106, Theorem (2.8.29)]. The converse of the corollary follows from [10, p. 98, Corollary (2.8.7)].

Theorem 4.5 (we use the notation in Theorem 4.3.). If A' is a two-sided ideal of $B(I)$, the set of all continuous linear operators on I, then every quasi-complementor q on A is a complementor.
Proof. By Corollary 3.2, we can assume that A is infinite dimensional. In this proof, we identify A with A'. Let R be a closed right ideal in A. To complete the proof, it suffices to show that $R + R^q$ is closed by Lemma 3.1. Let $E = R \cap I$ and let $E' = [cl(EA)]^q \cap I$. By Lemma 4.2(iii), E' is the orthogonal complement of E in I. Denote the orthogonal projection on E by P. Let $a \in cl(R + R^q)$ and write $a = \lim_{n} (b_n + c_n)$ with $b_n \in R$ and $c_n \in R^q$. Since $b_n I \subseteq R I = R \cap I = E$, we have $(P b_n)(b) = b_n(b)$ for all $b \in I$. Hence $P b_n = b_n$. Since $c_n I \subseteq R^q \cap I = [cl(RA)]^q \cap I = cl(EA)^q \cap I = E'$, we have $P c_n = 0$. By the proof of [2, p. 41, Theorem 3], we have $\| P a - b_n \| \leq k \| a - b_n - c_n \|$, where k is a constant. Hence we have $P a \in R$ and so $a - P a \in R^q$. Therefore $a = P a + (a - P a) \in R + R^q$. Hence $R + R^q$ is closed and this completes the proof.

5. Induced quasi-complementors. In this section, unless otherwise stated, A will be a semisimple Banach algebra with norm $\| \cdot \|$ which is a dense subalgebra of a semisimple Banach algebra B with norm $| \cdot |$. Further A and B have the following properties:

(5.1) There exists a constant k such that $k \| x \| \geq | x |$ for all $x \in A$, i.e., $\| \cdot \|$ majorizes $| \cdot |$.

(5.2) Every proper closed left (right) ideal in B is the intersection of maximal modular (right) ideals in B.

Notation. For any subset E of A, $cl^A (E)$ (resp. $cl (E)$) will denote the closure of E in A (resp. B) and $l^A (E)$ and $r^A (E)$ (resp. $l (E)$ and $r (E)$) the left and right annihilators of E in A (resp. B).

Lemma 5.1. Let A be an annihilator algebra. Then

(i) For each closed right ideal R of A, we have $cl(R) \cap A = r_A (l_A (R))$.

(ii) If M is a closed right ideal of B, then $M = cl(M \cap A)$.

Proof. First we note that B is a dual algebra [13, p. 81] and A and B have the same socle S (Lemma 4.1 in [7]).

(i) Let $\{ e_a \}$ be the family of all minimal idempotents of B contained in $l(R)$. Since B is a dual algebra, it follows from Lemma 2.1 that $cl(\Sigma_a B e_a) = l(R)$. Since $e_a \in l(R) \cap S \subseteq l(R) \cap A = l_A (R)$, we have $cl(l_A (R)) \supseteq l(R)$. Clearly $l(R) \supset cl(l_A (R))$ and therefore $cl(l_A (R)) = l(R) = l(cl(R))$. Hence by the duality of B, we have

$$r_A (l_A (R)) = r(l_A (R)) \cap A = r(cl(l_A (R))) \cap A = r(l(cl(R))) \cap A = cl(R) \cap A.$$

This proves (i).

(ii) Let $\{ e_\beta \}$ be the family of all minimal idempotents of B contained in M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
By Lemma 2.1, \(M = \text{cl}(\Sigma \alpha e_{\alpha}B) \). Since each \(e_{\beta}B \subseteq M \cap S \subseteq M \cap A \), we have \(\Sigma \alpha e_{\alpha}B \subseteq M \cap A \). It is now easy to see that \(M = \text{cl}(M \cap A) \). This completes the proof.

Lemma 5.2. Let \(A \) be an annihilator algebra. Then the following statements are equivalent:

(i) \(A \) is a dual algebra.

(ii) For each element \(x \in A \), we have \(x \in \text{cl}_{A}(xA) \cap \text{cl}_{A}(Ax) \).

(iii) For each closed right (left) ideal \(R \) of \(A \), we have \(R = \text{cl}(R) \cap A \).

Proof. (i) \(\Rightarrow \) (ii). This follows immediately from [10, p. 97, Corollary (2.8.2)].

(ii) \(\Rightarrow \) (iii). Suppose (ii) holds. Let \(S \) be the socle of \(A \). By Lemma 4.1 in [7], \(S \) is also the socle of \(B \). Let \(R \) be a closed right ideal of \(A \). We show that \(\text{cl}(R)S \subseteq R \). In fact, let \(x \in \text{cl}(R), \ y \in A \) and \(e \) a minimal idempotent in \(A \). Let \(\{x_n\} \) be a sequence in \(R \) such that \(x_n \to x \) in \(| \cdot | \). By the proof of [13, p. 82, Lemma 3.2], the norms \(\| \cdot \| \) and \(| \cdot | \) are equivalent on \(A \). Hence it follows easily that \(x_nye \to xye \) in \(\| \cdot \| \). Therefore \(xye \in R \) and so \(\text{cl}(P) \subseteq R \). Let \(a \in \text{cl}(R) \cap A \). Then we have

\[
a \in \text{cl}_{A}(aA) = \text{cl}_{A}(aS) \subseteq \text{cl}_{A}(\text{cl}(R)S) \subseteq R.
\]

Hence \(\text{cl}(R) \cap A \subseteq R \). Clearly \(R \subseteq \text{cl}(R) \cap A \) and so \(R = \text{cl}(R) \cap A \). This proves (iii).

(iii) \(\Rightarrow \) (i). Suppose (iii) holds. Let \(R \) be a closed right ideal of \(A \). By Lemma 5.1, we have \(R = \text{cl}(R) \cap A = \text{cl}(A) \). Similarly we can show that \(J = \text{cl}(J) \) for all closed left ideals \(J \) of \(A \). Therefore \(A \) is a dual algebra and the proof is complete.

Theorem 5.3. Let \(A \) be a dual algebra. Then for every quasi-complementor \(r \) on \(B \), the mapping \(q: R \to [\text{cl}(R)]^p \cap A \) on the closed right ideals \(R \) of \(A \) is a quasi-complementor on \(A \).

Proof. Let \(R \) be a closed right ideal of \(A \). Since \(A \) is a dual algebra, by Lemma 5.2, \(R = \text{cl}(R) \cap A \). Therefore

\[
R \cap R^q = \text{cl}(R) \cap [\text{cl}(R)]^p \cap A = 0.
\]

By Lemma 5.1, we have \([\text{cl}(R)]^p = \text{cl}([\text{cl}(R)]^p \cap A) \). Therefore it follows that \((R^q)^q = [\text{cl}([\text{cl}(R)]^p \cap A)]^p \cap A = [\text{cl}(R)]^pp \cap A = \text{cl}(R) \cap A = R \).

If \(R_1 \) and \(R_2 \) are closed right ideals of \(A \) such that \(R_1 \supset R_2 \), then clearly \(R_1^q \subseteq R_2^q \). Therefore \(q \) is a quasi-complementor on \(A \).

We now establish the converse of Theorem 5.3.

Theorem 5.4. Let \(A \) be a dual algebra. Then for every quasi-complementor \(q \)
on A, the mapping $p: M \to \text{cl}(\{M \cap A\}^q)$ on the closed right ideals M of B is a quasi-complementor on B.

Proof. Let M be a closed right ideal of B. Then it follows from Lemma 5.2 that $M \cap M^p \cap A = \{M \cap A\} \cap \{M \cap A\}^q = (0)$. Hence it follows from Lemma 5.1 that $M \cap M^p = \text{cl}(M \cap M^p \cap A) = (0)$. We also have

$$(M^p)^p = \text{cl}(\{\text{cl}(\{M \cap A\}^q) \cap A\}^q) = \text{cl}(\{M \cap A\}^q) = M.$$

If M_1 and M_2 are closed right ideals of B such that $M_1 \supset M_2$, then clearly $M_1^p \subset M_2^p$. Therefore p is a quasi-complementor on B and this completes the proof.

Theorem 6.1. Let A be a dual A^*-algebra. Then A is a quasi-complemented algebra under the quasi-complementor $q: R \to \mathcal{I}(R)^*$.

Proof. Let R be a closed right ideal of A. Since $\mathcal{I}(R)^* = r(R^*)$, by the duality of A, we have $(R^q)^q = R$. It is easy to see that q has properties (2.1) and (2.3). Therefore q is a quasi-complementor on A and this completes the proof.

It is known that a B^*-algebra is complemented if and only if it is dual (see [3, p. 463, Theorem 3.6]). A similar result is true for quasi-complemented algebras. In fact we have the following:

Corollary 6.2. Let A be an A^*-algebra which is a dense two-sided ideal of a B^*-algebra B. Then A is a dual algebra if and only if A is quasi-complemented and $x \in \text{cl}(xA)$ for all $x \in A$.

Proof. Suppose A is quasi-complemented and $x \in \text{cl}(xA)$ for all $x \in A$. Let e be a minimal idempotent of A. Clearly $Ae = Be$. Therefore by Lemma 3.3 and Theorem 4.3 in [7], A is an annihilator algebra. Hence by Lemma 5.2, A is a dual algebra. The converse of the corollary follows from Theorem 6.1 and Lemma 5.2.

Corollary 6.3. Let A be a B^*-algebra. Then A is a dual if and only if A is quasi-complemented.

Proof. Since a B^*-algebra has an approximate identity, it follows that $x \in \text{cl}(xA)$. Therefore Corollary 6.3 follows immediately from Corollary 6.2.

Lemma 6.4. Let A be an annihilator semisimple Banach algebra with a quasi-complementor q. Then for every maximal closed right ideal R of A, there exists a unique minimal idempotent f such that $R^q = fA$ and $R = (1 - f)A$.

Proof. By [10, p. 97, Theorem (2.8.5)], R is a maximal modular right ideal of A. Since $R + R^q = A$, by [3, p. 462, Lemma 3.1] we have the desired result.
Definition. Let A be a quasi-complemented Banach algebra. A minimal idempotent f in A is called a q-projection if $(fA)^q = (1-f)A$.

We now introduce the concept of continuous quasi-complementor on annihilator A^*-algebras. This is similar to the concept of continuous complementor on B^*-algebras (see [3, p. 463, Definition 3.7]).

Definition. Let A be an annihilator A^*-algebra with a quasi-complementor q. Let E denote the set of all hermitian minimal idempotents and E_q the set of all q-projections in A. For each $e \in E$, let $Q(e)$ be the unique element of E_q such that $Q(e)A = eA$ (Lemma 6.4). The mapping $Q: e \rightarrow Q(e)$ is called the q-derived mapping of E into E_q. The quasi-complementor q is said to be continuous if Q is continuous in the relative topologies of E and E_q induced by the given norm on A.

Remark 1. Since by [10, p. 261, Lemma (4.10.1)] every minimal right ideal of A is of the form eA with a unique $e \in E$, it follows that Q maps E onto E_q.

Remark 2. Let A and q be as in Theorem 6.1. Then $E = E_q$ and so the q-derived mapping Q of q is the identity mapping. Hence q is uniformly continuous.

For commutative dual A^*-algebras, the study of quasi-complementor becomes very trivial.

Theorem 6.5. Let A be a commutative dual A^*-algebra. Then there is only one quasi-complementor q on A; q is uniformly continuous.

Proof. Let B be the completion of A in an auxiliary norm. We use the notation introduced in §5. The existence of a quasi-complementor on A is given by Theorem 6.1. Let q be any given quasi-complementor on A. By Theorem 5.6, q induces a quasi-complementor p on B. Let M be a closed ideal in B. Since $M \cap M^q = (0)$, it follows from [10, p. 259, Corollary (4.9.22)] that $M + M^q$ is a closed ideal in B. Therefore, by Lemma 3.1, $M + M^q = B$. Since $MM^q \subseteq M \cap M^q = (0)$, $M^p \subseteq \mathcal{K}(M) = r(M)$. Since $M + \mathcal{K}(M) = B$, it follows that $M^p = \mathcal{K}(M)$. Let R be an ideal in A. Then we see that $R = R^*$ and $R^q = [cl(R)]P \cap A = \mathcal{I}_A(R)$. Therefore q is uniquely determined. By Remark 2, q is uniformly continuous and this completes the proof.

Corollary 6.6. Let A be a commutative dual A^*-algebra which is a dense two-sided ideal of a B^*-algebra. Then there is a unique complementor q on A; q is uniformly continuous.

Proof. This follows easily from Theorem 6.5, [4, p. 233, Theorem 3.8] and [9, p. 30, Theorem 16].

7. Quasi-complementors on B^*-algebras. In this section, unless otherwise stated, A will be a B^*-algebra with a quasi-complementor q. By Corollary 6.3, A is a dual algebra.
Let H be a Hilbert space with inner product $(\ ,\)$. If x and y are elements of H, then $x \otimes y$ will denote the operator on H given by the relation $(x \otimes y)(h) = (b, y)x$ for all $b \in H$. $LC(H)$ will denote the algebra of all completely continuous linear operators on H. If A is a simple dual B^*-algebra, then it is well known that $A = LC(H)$ for some Hilbert space H. H can be chosen as a minimal left ideal in A with the inner product given in [10, p. 261, Theorem (4.10.3)].

Lemma 7.1. Let A be a simple B^*-algebra. Then every quasi-complementor q on A is a complementor.

Proof. Since A has the form $LC(H)$, it follows from Theorem 4.5 that q is a complementor on A.

Notation. Let $A = LC(H)$. For every closed subspace X of H, let $J(X) = \{a \in A: a(H) \subset X\}$. For every closed right ideal R of A, let $S(R)$ be the smallest closed subspace of H that contains the range $a(H)$ of each operator a in R.

Let $A = LC(H)$. For each closed right ideal R of A, by Lemma 7.1, the projection P_R on R along R^q is continuous. Let P_R' be the projection on $S(R)$ along $S(R^q)$. Since by [3, p. 464, Lemma 4.1], $S(R) \oplus S(R^q) = H$, it follows that P_R' is continuous.

Lemma 7.2. Let R be a closed right ideal of $A = LC(H)$. Then $\|P_R\| = \|P_R'\|$.

Proof. Let $k > 0$ be given. Choose $x \in A$ such that $\|x\| \leq 1$ and $\|P_R(x)\| \geq \|P_R\| - k/2$. Hence there exists some $b \in H$ such that $\|b\| \leq 1$ and $\|(P_R(x))(b)\| > \|P_R\| - k$. Write $x = y + z$ with $y \in R$ and $z \in R^q$. Then $y(b) \in S(R)$ and $z(b) \in S(R^q)$ and so

$$\|P_R'(x(b))\| = \|y(b)\| = \|(P_R(x))(b)\| > \|P_R\| - k.$$

Since $\|x(b)\| \leq 1$ and k is arbitrary, it follows that $\|P_R'\| \geq \|P_R\|$. By using [3, p. 464, Lemma 4.1] and a similar argument, we can show that $\|P_R'\| \geq \|P_R\|$. Therefore $\|P_R\| = \|P_R'\|$.

Lemma 7.3. Suppose $A = LC(H)$ with $\dim H \geq 3$, q a continuous quasi-complementor on A and R a closed right ideal of A. If $\|P_R\| > k$ for some constant k, then there exists a q-projection $f \in R$ such that $\|f\| > k$.

Proof. By Lemma 7.2, $\|P_R'\| > k$. Hence there exists an element $b \in H$ such that $\|b\| = 1$ and $\|P_R'(b)\| > k$. Write $b = u + v$ with $u \in S(R)$ and $v \in S(R^q)$. It is clear that $u \neq 0$. Let Q be a q-representing operator on H (see [3, p. 467, Definition 5.4]) and put $f = (u \otimes Qu)/(u, Qu)$. Then f is a q-projection (see [3, p. 467]). Since $u \in S(R), f \in R$. Let $(x, y) = (x, Qy)$ for all $x, y \in H$. Since q is a continuous complementor, by the proof of [3, p. 473, Theorem 6.11], $S(R)$ is the orthogonal complement of $S(R^q)$ in H relative to the inner product (x, y). Since
Let A be a B^*-algebra with a quasi-complementor q. Let $\{I_\lambda : \lambda \in \Lambda\}$ be the family of all minimal closed two-sided ideals of A. Since A is a dual B^*-algebra, $A = (\sum \lambda I_\lambda)_0$, the $B^*(\infty)$-sum of $\{I_\lambda : \lambda \in \Lambda\}$. Since each I_λ is a simple dual B^*-algebra, $I_\lambda = LC(H_\lambda)$ for some Hilbert space $H_\lambda (\lambda \in \Lambda)$. By Corollary 3.5, q induces a quasi-complementor q_λ on each I_λ. By Lemma 7.1, q_λ is a complementor on I_λ.

Let E (resp. E_λ) be the set of all hermitian minimal idempotents in A (resp. I_λ) and let E_q (resp. E_q^λ) be the set of all q-projections in A (resp. I_λ). Clearly $E_\lambda = E \cap I_\lambda$ and $E_q^\lambda = E_q \cap I_\lambda (\lambda \in \Lambda)$.

Lemma 7.4. A quasi-complementor q on A is continuous if and only if each q_λ is continuous.

Proof. By a similar argument in [3, p. 464, Theorem 3.9], we have the desired result.

Lemma 7.5. Let A be a B^*-algebra which has no minimal left ideal of dimension less than three and q a quasi-complementor on A. If E_q is a closed and bounded subset of A, then q is a complementor on A.

Proof. For each closed right ideal R_λ of $LC(H_\lambda)$, let P_{R_λ} be the projection on R_λ along R_λ^a. Let

$$k_\lambda = \sup \{\|P_{R_\lambda}\| : R_\lambda \subseteq LC(H_\lambda)\} \quad (\lambda \in \Lambda),$$

and let

$$k = \sup \{k_\lambda : \lambda \in \Lambda\}.$$

We show that k is finite. Suppose this is not so. Then for each positive integer n, there exists some $k_\lambda \in \{k_\lambda : \lambda \in \Lambda\}$ such that $k_\lambda > n$. Hence there exists a closed right ideal $R_n \subseteq LC(H_n)$ such that $\|P_{R_n}\| > n$. Since $E_q^n = E_q \cap I_n$, it follows immediately from the assumption that E_q^n is a closed and bounded subset of I_n. Since q_λ is a complementor on I_n, by [12, p. 257, Theorem 3], q_λ is continuous. Since $\|P_{R_n}\| > n$, it follows from Lemma 7.3 that there exists some $f_n \in E_q^n \subseteq E_q$ such that $\|f_n\| > n (n = 1, 2, \cdots)$. This contradicts the boundedness of E_q^n and shows that k is finite.

Let M be a closed right ideal of A and let $M_\lambda = M \cap I_\lambda (\lambda \in \Lambda)$. Since $A = (\sum \lambda I_\lambda)_0$, we see that $M = (\sum \lambda M_\lambda)_0$. Since by Corollary 3.5, $M_q \cap I_\lambda = M_q^\lambda$, we have

$$M_q = (\sum \lambda M_q^\lambda \cap I_\lambda)_0 = (\sum \lambda M_q^\lambda)_0.$$
Let $x = (x_\lambda) \in A$ and write $x_\lambda = y_\lambda + z_\lambda$, where $y_\lambda \in M_\lambda^A$ and $z_\lambda \in M^qA$. Then $\|y_\lambda\| = \|P_{M_\lambda^A}x_\lambda\| \leq k\|x_\lambda\|$ ($\lambda \in \Lambda$). Since k is finite, it follows that $(y_\lambda) \in (\sum_\lambda M_\lambda^A)q = M$. Similarly we have $(z_\lambda) \in M^qA$. Therefore $A = M + M^q$ and so q is a complementor on A.

We can now prove the main result of this section.

Theorem 7.6. Let A be a B^*-algebra which has no minimal left ideal of dimension less than three and q a quasi-complementor on A. If q is uniformly continuous, then it is a complementor.

Proof. By Lemma 7.5, it suffices to show that E_q^A is a closed and bounded subset of A. By Lemma 7.4 and [12, p. 257, Theorem 3] each E_q^A is closed and bounded. Hence it follows that E_q^A is closed. It remains to show that E_q^A is bounded. Suppose this is not so. Then we can choose a sequence of q-projections f_n such that $f_n \in E_q^A$ and $\|f_n\| > n$ ($n = 1, 2, \ldots$). Let T_n be a q-representing operator on H_n. Then by [3, p. 470, Theorem 6.4], T_n is a continuous positive linear operator with inverse T_n^{-1}. We may assume that $\|T_n^{-1}\| = 1$ for all n (see [3, p. 472, Corollary 6.10]). We can write

\[f_n = (u_n \otimes T_n u_n)/(u_n, T_n u_n), \]

where $u_n \in H_n$ and $\|u_n\| = 1$ ($n = 1, 2, \ldots$) (see [3, p. 467]). Since $$ \inf\{(b_n, T_n b_n) : \|b_n\| = 1 \text{ and } b_n \in H_n\} = \|T_n^{-1}\|^{-1} = 1,$$

if follows from (*) that $\|T_n u_n\| > n$ ($n = 1, 2, \ldots$). Let Q be the q-derived mapping of q. By using the argument in [3, p. 477, Theorem 7.4], we can find minimal idempotents $a_n, b_n \in E$ such that $\|a_n - b_n\| \to 0$ and $\|Q(a_n) - Q(b_n)\| \to \infty$. This contradicts the uniform continuity of Q. Therefore E_q^A is bounded and this completes the proof.

Remark. Let B and p be given in [1, p. 396, Example 1]. Then p is a continuous quasi-complementor on B. But p is not a complementor. Therefore a continuous quasi-complementor may not be uniformly continuous by Theorem 7.6. However a continuous complementor on a B^*-algebra is uniformly continuous (see [1] and [3]).

Corollary 7.7. Let A be as in Theorem 7.6. Then a quasi-complementor q on A is uniformly continuous if and only if E_q^A is a closed and bounded subset of A.

Proof. The corollary follows immediately from Theorem 7.6 and [12, p. 257, Theorem 3].
REFERENCES

DEPARTMENT OF MATHEMATICS, McMASTER UNIVERSITY, HAMILTON, ONTARIO, CANADA

(Current address of T. Husain)

Current address (P. K. Wong): Department of Mathematics, Seton Hall University, South Orange, New Jersey 07079