Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Modular permutation representations


Author: L. L. Scott
Journal: Trans. Amer. Math. Soc. 175 (1973), 101-121
MSC: Primary 20C20
MathSciNet review: 0310051
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A modular theory for permutation representations and their centralizer rings is presented, analogous in several respects to the classical work of Brauer on group algebras.

Some principal ingredients of the theory are characters of indecomposable components of the permutation module over a p-adic ring, modular characters of the centralizer ring, and the action of normalizers of p-subgroups P on the fixed points of P. A detailed summary appears in [15].

A main consequence of the theory is simplification of the problem of computing the ordinary character table of a given centralizer ring. Also, some previously unsuspected properties of permutation characters emerge. Finally, the theory provides new insight into the relation of Brauer's theory of blocks to Green's work on indecomposable modules.


References [Enhancements On Off] (What's this?)

  • [1] A. Adrian Albert, Structure of algebras, Revised printing. American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. MR 0123587
  • [2] Emil Artin, Cecil J. Nesbitt, and Robert M. Thrall, Rings with Minimum Condition, University of Michigan Publications in Mathematics, no. 1, University of Michigan Press, Ann Arbor, Mich., 1944. MR 0010543
  • [3] Richard Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung. II, Math. Z. 72 (1959/1960), 25–46 (German). MR 0108542
  • [4] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979
  • [5] Walter Feit, Some properties of the Green correspondence, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969, pp. 139–148. MR 0242968
  • [6] Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636
  • [7] J. A. Green, Blocks of modular representations, Math. Z. 79 (1962), 100–115. MR 0141717
  • [8] J. A. Green, A transfer theorem for modular representations, J. Algebra 1 (1964), 73–84. MR 0162843
  • [9] James A. Green, Some remarks on defect groups, Math. Z. 107 (1968), 133–150. MR 0233901
  • [10] D. G. Higman, Modules with a group of operators, Duke Math. J. 21 (1954), 369–376. MR 0067895
  • [11] D. G. Higman, Intersection matrices for finite permutation groups, J. Algebra 6 (1967), 22–42. MR 0209346
  • [12] Gordon Keller, Concerning the degrees of irreducible characters, Math. Z. 107 (1968), 221–224. MR 0235050
  • [13] L. L. Scott, Uniprimitive groups of degree $ kp$, Ph. D. Thesis, Yale University, New Haven, Conn., 1968.
  • [14] -, Uniprimitive permutation groups, Theory of Finite Groups, (Sympos., Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969), pp. 55-62.
  • [15] L. Scott, The modular theory of permutation representations, Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 137–144. MR 0320133
  • [16] O. Tamaschke, A generalized character theory on finite groups, Proc. Internat. Conf. Theory of Groups, Austral. Nat. U. Canberra, August 1965, New York, 1967, pp. 347-355.
  • [17] Edwin Weiss, Algebraic number theory, McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963. MR 0159805
  • [18] Helmut Wielandt, Finite permutation groups, Translated from the German by R. Bercov, Academic Press, New York-London, 1964. MR 0183775

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C20

Retrieve articles in all journals with MSC: 20C20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1973-0310051-1
Keywords: Indecomposable module, vertex, centralizer ring, decomposition numbers, Brauer homomorphism, Brauer's first fundamental theorem, Green correspondence, Brauer's seconds fundamental theorem, defect group, defect 0 and 1, splitting field
Article copyright: © Copyright 1973 American Mathematical Society