Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Class numbers of totally imaginary quadratic extensions of totally real fields


Author: Judith S. Sunley
Journal: Trans. Amer. Math. Soc. 175 (1973), 209-232
MSC: Primary 12A50
DOI: https://doi.org/10.1090/S0002-9947-1973-0311622-9
MathSciNet review: 0311622
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let K be a totally real algebraic number field. This paper provides an effective constant $ C(K,h)$ such that every totally imaginary quadratic extension L of K with $ {h_L} = h$ satisfies $ \vert{d_L}\vert < C(K,h)$ with at most one possible exception.

This bound is obtained through the determination of a lower bound for $ L(1,\chi )$ where $ \chi $ is the ideal character of K associated to L. Results of Rademacher concerning estimation of L-functions near $ s = 1$ are used to determine this lower bound. The techniques of Tatuzawa are used in the proof of the main theorem.


References [Enhancements On Off] (What's this?)

  • [1] Alan Baker, Imaginary quadratic fields of class number 2, Ann. of Math. (2) 94 (1971), 139-152. MR 0299583 (45:8631)
  • [2] Z. I. Borevič and I. R. Safarevič, Number theory, ``Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 #1080; MR 33 #4001. MR 0195803 (33:4001)
  • [3] T. Estermann, On Dirichlet's L functions, J. London Math. Soc. 23 (1948), 275-279. MR 10, 356. MR 0027797 (10:356c)
  • [4] C. F. Gauss, Disquisitiones arithmeticae, Fleichser, Leipzig, 1870; English transl., Yale Univ. Press, New Haven, Conn., 1966. MR 33 #5545. MR 0197380 (33:5545)
  • [5] Larry Goldstein, A generalization of Stark's theorem, J. Number Theory 3 (1971), 323-346. MR 0289456 (44:6646)
  • [6] -, Imaginary quadratic fields of class number 2, J. Number Theory 4 (1972), 286-301. MR 0299587 (45:8635)
  • [7] -, Relative imaginary quadratic fields of class number 1 or 2, Trans. Amer. Math. Soc. 165 (1972), 353-364. MR 0291124 (45:218)
  • [8] Emil Grosswald, Negative discriminants of binary quadratic forms with one class in each genus, Acta Arith. 8 (1962/63), 295-306. MR 28 #64. MR 0156820 (28:64)
  • [9] E. Hecke, Bestimmung der Klassenzahl einer neuen Reihe von algebraischen Zahlkörpern, Göttinger Nachr. 1921.
  • [10] H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class number one, Quart. J. Math. Oxford Ser. 5 (1934), 293-301.
  • [11] E. Landau, Einführung in die Elementare und Analytische Theorie der Algebraischen Zahlen und der Ideale, 2nd ed., Teubner, Leipzig, 1927.
  • [12] -, Verallgemeinerung eines Polyaschen Satzes auf algebrasche Zahlkörpern, Göttinger Nachr. 1918, 478-488.
  • [13] Serge Lang, Algebraic numbers, Addison-Wesley, Reading, Mass., 1964. MR 28 #3974. MR 0160763 (28:3974)
  • [14] Hans A. Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z. 72 (1959/60), 192-204. MR 22 #7982. MR 0117200 (22:7982)
  • [15] K. Reidemeister, Über die Relativklassenzahl gewisser relativquadratis cher Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1921), 27-48.
  • [16] C. L. Siegel, Lectures on advanced analytic number theory, Tata Institute of Fundamental Research, Bombay, 1961. MR 0262150 (41:6760)
  • [17] -, Über die Klassenzahl quadratis cher Zahlkörper, Acta Arith. 1 (1935), 275-279.
  • [18] Harold M. Stark, A complete determination of the complex quadratic fields of classnumber one, Michigan Math. J. 14 (1967), 1-27. MR 36 #5102. MR 0222050 (36:5102)
  • [19] -, Imaginary quadratic fields of class number 2, Ann. of Math. (2) 94 (1971), 153-174.
  • [20] J. Sunley, On the class numbers of totally imaginary quadratic extensions of totally real fields, Ph.D. Dissertation, University of Maryland, College Park, Md., 1971. MR 0291127 (45:221)
  • [21] -, On the class numbers of totally imaginary quadratic extensions of totally real fields, Bull. Amer. Math. Soc. 78 (1972), 74-76. MR 0291127 (45:221)
  • [22] T. Tatuzawa, On a theorem of Siegel, Japan. J. Math. 21 (1951), 163-178. MR 14, 452. MR 0051262 (14:452c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 12A50

Retrieve articles in all journals with MSC: 12A50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0311622-9
Keywords: Number field, class number, imaginary quadratic extension
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society