Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Cylindric algebras and algebras of substitutions


Author: Charles Pinter
Journal: Trans. Amer. Math. Soc. 175 (1973), 167-179
MSC: Primary 02J15
MathSciNet review: 0317931
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several new formulations of the notion of cylindric algebra are presented. The class $ C{A_\alpha }$ of all cylindric algebras of degree $ \alpha $ is shown to be definitionally equivalent to a class of algebras in which only substitutions (together with the Boolean $ + , \cdot $, and $ - $) are taken to be primitive operations. Then $ C{A_\alpha }$ is shown to be definitionally equivalent to an equational class of algebras in which only substitutions and their conjugates (together with $ + , \cdot $, and $ - $) are taken to be primitive operations.


References [Enhancements On Off] (What's this?)

  • [1] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), 433-454.
  • [2] William Craig, Unification and abstraction in algebraic logic, Studies in algebraic logic, Math. Assoc. Amer., Washington, D.C., 1974, pp. 6–57. Studies in Math., Vol. 9. MR 0376345
  • [3] Paul R. Halmos, The basic concepts of algebraic logic, Amer. Math. Monthly 63 (1956), 363–387. MR 0086028
  • [4] Paul R. Halmos, Algebraic logic. I. Monadic Boolean algebras, Compositio Math. 12 (1956), 217–249. MR 0078304
  • [5] P. R. Halmos, Algebraic logic. II. Homogeneous locally finite polyadic Boolean algebras of infinite degree, Fund. Math. 43 (1956), 255–325. MR 0086029
  • [6] L. Henkin, D. Monk and A. Tarski, Cylindric algebras, North-Holland, Amsterdam, 1971.
  • [7] Bjarni Jónsson and Alfred Tarski, Boolean algebras with operators. I, Amer. J. Math. 73 (1951), 891–939. MR 0044502
  • [8] P.-F. Jurie, Notion de quasi-somme amalgamée: Premières applications à I'algèbre boolérienne polyadique, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A1033-A1036. MR 37 #3975.
  • [9] Léon LeBlanc, Transformation algebras, Canad. J. Math. 13 (1961), 602–613. MR 0132011
  • [10] Anne Preller, Substitution algebras in their relation to cylindric algebras, Arch. Math. Logik Grundlagenforsch 13 (1970), 91–96. MR 0285369
  • [11] H. Rasiowa and R. Sikorski, A proof of the completeness theorem of Gödel, Fund. Math. 37 (1950), 193–200. MR 0040232

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 02J15

Retrieve articles in all journals with MSC: 02J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0317931-1
Keywords: Cylindric algebra, cylindrification, diagonal element, algebraic logic
Article copyright: © Copyright 1973 American Mathematical Society