Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A characterization of $ U\sb{3}(2\sp{n})$ by its Sylow $ 2$-subgroup


Author: Robert L. Griess
Journal: Trans. Amer. Math. Soc. 175 (1973), 181-186
MSC: Primary 20D05
MathSciNet review: 0318292
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We determine all the finite groups having a Sylow 2-subgroup isomorphic to that of $ {U_3}({2^n}),n \geq 3$. In particular, the only such simple groups are the $ {U_3}({2^n})$.


References [Enhancements On Off] (What's this?)

  • [1] Michael J. Collins, The characterisation of the unitary groups 𝑈₃(2ⁿ) by their Sylow 2-subgroups, Bull. London Math. Soc. 4 (1972), 49–53. MR 0340441
  • [2] Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 0166261
  • [3] Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
  • [4] Daniel Gorenstein and John H. Walter, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284–319. MR 0292927
  • [5] R. Lyons, Thesis, University of Chicago, Chicago, Ill., 1970.
  • [6] I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50; ibid. 132 (1907), 85-137.
  • [7] Michio Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math. (2) 82 (1965), 191–212. MR 0183773
  • [8] John H. Walter, The characterization of finite groups with abelian Sylow 2-subgroups., Ann. of Math. (2) 89 (1969), 405–514. MR 0249504

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20D05

Retrieve articles in all journals with MSC: 20D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0318292-4
Keywords: Projective special unitary groups, 2-closed centralizers of involutions, Sylow 2-subgroups, connected, balanced group
Article copyright: © Copyright 1973 American Mathematical Society