Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Integral representation of functions and distributions positive definite relative to the orthogonal group

Author: A. E. Nussbaum
Journal: Trans. Amer. Math. Soc. 175 (1973), 355-387
MSC: Primary 43A35
MathSciNet review: 0333600
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A continuous function f on an open ball B in $ {R^N}$ is called positive definite relative to the orthogonal group $ O(N)$ if f is radial and $ \smallint \smallint f(x - y)\phi (x)\overline {\phi (y)} \;dx\;dy \geq 0$ for all radial $ \phi \in C_0^\infty (B/2)$. It is shown that f is positive definite in B relative to $ O(N)$ if and only if f has an integral representation $ f(x) = \smallint {e^{ix \cdot t}}d{\mu _1}(t) + \smallint {e^{x \cdot t}}d{\mu _2}(t)$, where $ {\mu _1}$ and $ {\mu _2}$ are bounded, positive, rotation invariant Radon measures on $ {R^N}$ and $ {\mu _2}$ may be taken to be zero if, in addition to f being positive definite relative to $ O(N),\smallint \smallint f(x - y)( - \Delta \phi )(x)\phi (y)\;dx\;dy \geq 0$ for all radial $ \phi \in C_0^\infty (B/2)$. Both conditions are satisfied if f is a radial positive definite function in B. Thus the theorem yields as a special case Rudin's theorem on the extension of radial positive definite functions. The result is extended further to distributions.

References [Enhancements On Off] (What's this?)

  • [1] Ju. M. Berezans′kiĭ, Expansions in eigenfunctions of selfadjoint operators, Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. MR 0222718
  • [2] Salomon Bochner, Lectures on Fourier integrals. With an author’s supplement on monotonic functions, Stieltjes integrals, and harmonic analysis, Translated by Morris Tenenbaum and Harry Pollard. Annals of Mathematics Studies, No. 42, Princeton University Press, Princeton, N.J., 1959. MR 0107124
  • [3] A. P. Calderón and R. Pepinsky, On the phase of Fourier coefficients for positive real periodic functions, Computing Methods and the Phase Problem in X-ray Crystal Analysis, Department of Physics, Pennsylvania State College, State College, Pa., 1952, pp. 339-348.
  • [4] Allen Devinatz, On the extensions of positive definite functions, Acta Math. 102 (1959), 109–134. MR 0109992
  • [5] G. I. Èskin, A sufficient condition for the solvability of a multi-dimensional problem of moments, Soviet Math. Dokl. 1 (1960), 895–898. MR 0121660
  • [6] Lars Gårding, Applications of the theory of direct integrals of Hilbert spaces to some integral and differential operators, The Institute for Fluid Dynamics and Applied Mathematics, Lecture series no. 11, University of Maryland, College Park, Md., 1954. MR 0071627
  • [7] I. M. Gel′fand and A. G. Kostyučenko, Expansion in eigenfunctions of differential and other operators, Dokl. Akad. Nauk SSSR (N.S.) 103 (1955), 349–352 (Russian). MR 0073136
  • [8] I. M. Gel′fand and N. Ya. Vilenkin, Generalized functions. Vol. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Applications of harmonic analysis; Translated from the Russian by Amiel Feinstein. MR 0435834
  • [9] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955), 140 (French). MR 0075539
  • [10] L. Hörmander, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #4221.
  • [11] M. Krein, Sur le problème du prolongement des fonctions hermitiennes positives et continues, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 17–22 (French). MR 0004333
  • [12] M. Krein, On a general method of decomposing Hermite-positive nuclei into elementary products, C. R. (Doklady) Acad. Sci. URSS (N.S.) 53 (1946), 3–6. MR 0018342
  • [13] Béla Sz.-Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Berichtigter Nachdruck. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 39, Springer-Verlag, Berlin-New York, 1967 (German). MR 0213890
  • [14] John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401–485. MR 0029101
  • [15] A. E. Nussbaum, Radial exponentially convex functions, J. Analyse Math. 25 (1972), 277–288. MR 0302835
  • [16] Albrecht Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe der Institute Für Mathematik bei der Deutschen Akademie der Wissenschaften zu Berlin. Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965 (German). MR 0181888
  • [17] Walter Rudin, The extension problem for positive-definite functions, Illinois J. Math. 7 (1963), 532–539. MR 0151796
  • [18] Walter Rudin, An extension theorem for positive-definite functions, Duke Math. J. 37 (1970), 49–53. MR 0254514
  • [19] I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), no. 4, 811–841. MR 1503439, 10.2307/1968466
  • [20] François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
  • [21] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A35

Retrieve articles in all journals with MSC: 43A35

Additional Information

Keywords: Positive definite functions, positive definite distributions, expansions into generalized eigenvectors, nuclear spectral theorem
Article copyright: © Copyright 1973 American Mathematical Society