Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Infinite matroids


Author: Samuel S. Wagstaff
Journal: Trans. Amer. Math. Soc. 175 (1973), 141-153
MSC: Primary 05B35
DOI: https://doi.org/10.1090/S0002-9947-1973-0398867-7
MathSciNet review: 0398867
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Matroids axiomatize the related notions of dimension and independence. We prove that if S is a set with k matroid structures, then S is the union of k subsets, the ith of which is independent in the ith matroid structure, iff for every (finite) subset A of S, $ \vert A\vert$ is not larger than the sum of the dimensions of A in the k matroids.

A matroid is representable if there is a dimension-preserving imbedding of it in a vector space. A matroid is constructed which is not the union of finitely many representable matroids. It is shown that a matroid is representable iff every finite subset of it is, and that if a matroid is representable over fields of characteristic p for infinitely many primes p, then it is representable over a field of characteristic 0. Similar results for other kinds of representation are obtained.


References [Enhancements On Off] (What's this?)

  • [1] J. Edmonds, Minimum partition of a matroid into independent subsets, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 67-72. MR 32 #7441. MR 0190025 (32:7441)
  • [2] J. Edmonds and D. R. Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 147-153. MR 32 #5531. MR 0188090 (32:5531)
  • [3] R. L. Graham, K. Leeb and B. L. Rothschild, Ramsey's theorem for a class of categories (to appear).
  • [4] A. Horn, A characterization of unions of linearly independent sets, J. London Math. Soc. 30 (1955), 494-496. MR 17, 135. MR 0071487 (17:135d)
  • [5] A. W. Ingleton, A note on independence functions and rank, J. London Math. Soc. 34 (1959), 49-56. MR 21 #655. MR 0101848 (21:655)
  • [6] N. Jacobson, Lectures in abstract algebra. Vol. III: Theory of fields and Galois theory, Van Nostrand, Princeton, N. J., 1964. MR 30 #3087. MR 0172871 (30:3087)
  • [7] T. Lazarson, The representation problem for independence functions, J. London Math. Soc. 33 (1958), 21-25. MR 20 #5156. MR 0098701 (20:5156)
  • [8] A. Lehman, A solution of the Shannon switching game, J. Soc. Indust. Appl. Math. 12 (1964), 687-725. MR 30 #3463. MR 0173250 (30:3463)
  • [9] S. Mac Lane, Some interpretations of abstract linear dependence in terms of projective geometry, Amer. J. Math. 58 (1936), 236-240. MR 1507146
  • [10] -, A lattice formulation for transcendence degrees and p-bases, Duke Math. J. 4 (1938), 455-468. MR 1546067
  • [11] R. Rado, Axiomatic treatment of rank in infinite sets, Canad. J. Math. 1 (1949), 337-343. MR 11, 238. MR 0031993 (11:238c)
  • [12] -, Note on independence functions, Proc. London Math. Soc. (3) 7 (1957), 300-320. MR 19, 522. MR 0088459 (19:522b)
  • [13] -, A combinatorial theorem on vector spaces, J. London Math. Soc. 37 (1962), 351-353. MR 26 #3708. MR 0146186 (26:3708)
  • [14] W. T. Tutte, A homotopy theorem for matroids. I, II, Trans. Amer. Math. Soc. 88 (1958), 144-174. MR 21 #336. MR 0101526 (21:336)
  • [15] -, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527-552. MR 22 #679. MR 0101527 (21:337)
  • [16] -, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 1-47. MR 31 #4023. MR 0179781 (31:4023)
  • [17] S. S. Wagstaff, Jr., On infinite matroids, Ph. D. Dissertation, Cornell University, Ithaca, N. Y., 1970.
  • [18] H. Whitney, On the abstract properties of linear independence, Amer. J. Math. 57 (1935), 509-533. MR 1507091
  • [19] O. Zariski and P. Samuel, Commutative algebra. Vol. I, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1957. MR 19, 833. MR 0090581 (19:833e)
  • [20] J. Ax, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968), 239-271. MR 37 #5187. MR 0229613 (37:5187)
  • [21] H. H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, preliminary edition, M.I.T. Press, Cambridge, Mass., 1970. MR 0290980 (45:74)
  • [22] P. Erdös and S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc. 49 (1943), 457-461. MR 4, 249. MR 0008136 (4:249f)
  • [23] M. J. Piff, Properties of finite character of independence spaces, Mathematika 18 (1971), 201-208. MR 0306024 (46:5151)
  • [24] P. Vámos, A necessary and sufficient condition for a matroid to be linear, Matroid Conference, Brest, 1970 (preprint).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05B35

Retrieve articles in all journals with MSC: 05B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0398867-7
Keywords: Matroid, dimension function, transcendence degree, matroid representation problem, purely inseparable extension
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society