Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Free vector lattices

Author: Roger D. Bleier
Journal: Trans. Amer. Math. Soc. 176 (1973), 73-87
MSC: Primary 06A65; Secondary 06A60, 46A40
MathSciNet review: 0311541
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An investigation into the algebraic properties of free objects in the category of vector lattices is carried out. It is shown that each ideal of a free vector lattice is a cardinal (direct) sum of indecomposable ideals, and that there are no nonzero proper characteristic ideals.

Questions concerning injective and surjective endomorphisms are answered. Moreover, for finitely generated free vector lattices it is shown that the maximal ideals are precisely those which are both prime and principal.

These results are preceded by an efficient review of the known properties of free vector lattices. The applicability of the theory to abelian lattice-ordered groups is discussed in a brief appendix.

References [Enhancements On Off] (What's this?)

  • [1] Ichiro Amemiya, Countable decomposability of vector lattices, J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1966), 111–113. MR 0206681
  • [2] Kirby A. Baker, Free vector lattices, Canad. J. Math. 20 (1968), 58–66. MR 0224524
  • [3] -, Topological methods in the algebraic theory of vector lattices, Dissertation, Harvard University, Cambridge, Mass., 1966.
  • [4] S. J. Bernau, Free abelian lattice groups, Math. Ann. 180 (1969), 48–59. MR 0241340
  • [5] A. Bigard, Contribution à la théorie des groupes réticulé, Dissertation, Université de Paris, 1969.
  • [6] Garrett Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
  • [7] Paul F. Conrad, Free abelian 𝑙-groups and vector lattices, Math. Ann. 190 (1971), 306–312. MR 0281667
  • [8] -, Lattice ordered groups, Tulane University, New Orleans, La., 1970.
  • [9] Paul Conrad, The lateral completion of a lattice-ordered group, Proc. London Math. Soc. (3) 19 (1969), 444–480. MR 0244125
  • [10] László Fuchs, Teilweise geordnete algebraische Strukturen, Studia Mathematica–Mathematische Lehrbücher, Band XIX. Übersetzt aus dem Englischen von Éva Vas, Vandenhoeck & Ruprecht, Göttingen, 1966 (German). MR 0204547
  • [11] Melvin Henriksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math. 12 (1962), 533–565. MR 0153709
  • [12] David M. Topping, Some homological pathology in vector lattices, Canad. J. Math. 17 (1965), 411–428. MR 0174499
  • [13] Elliot Carl Weinberg, Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187–199. MR 0153759
  • [14] Elliot Carl Weinberg, Free lattice-ordered abelian groups. II, Math. Ann. 159 (1965), 217–222. MR 0181668

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06A65, 06A60, 46A40

Retrieve articles in all journals with MSC: 06A65, 06A60, 46A40

Additional Information

Keywords: Vector lattice, lattice-ordered group, free, archimedean, finitely generated, representation by continuous functions, maximal ideals
Article copyright: © Copyright 1973 American Mathematical Society