Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weighted norm inequalities for the conjugate function and Hilbert transform


Authors: Richard Hunt, Benjamin Muckenhoupt and Richard Wheeden
Journal: Trans. Amer. Math. Soc. 176 (1973), 227-251
MSC: Primary 42A40; Secondary 44A15, 47G05
DOI: https://doi.org/10.1090/S0002-9947-1973-0312139-8
MathSciNet review: 0312139
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The principal problem considered is the determination of all non-negative functions $ W(x)$ with period $ 2\pi $ such that

$\displaystyle \int_{ - \pi }^\pi {\vert\tilde f(\theta ){\vert^p}W(\theta )\;d\... ...a \leq C} \;\int_{ - \pi }^\pi {\vert f(\theta ){\vert^p}W(\theta )\;d\theta } $

where $ 1 < p < \infty $, f has period $ 2\pi $, C is a constant independent of f, and $ \tilde f$ is the conjugate function defined by

$\displaystyle \tilde f(\theta ) = \mathop {\lim }\limits_{\varepsilon \to {0^ +... ...rt\phi \vert \leq \pi } {\frac{{f(\theta - \phi )\;d\phi }}{{2\tan \phi /2}}.} $

The main result is that $ W(x)$ is such a function if and only if

$\displaystyle \left[ {\frac{1}{{\vert I\vert}}\int_I {W(\theta )\;d\theta } } \... ...ert}}\int_I {{{[W(\theta )]}^{ - 1/(p - 1)}}d\theta } } \right]^{p - 1}} \leq K$

where I is any interval, $ \vert I\vert$ denotes the length of I and K is a constant independent of I.

Various related problems are also considered. These include weak type results, the nonperiodic case, the discrete case, an application to weighted mean convergence of Fourier series, and an estimate for one of the functions in the Fefferman and Stein decomposition of functions of bounded mean oscillation.


References [Enhancements On Off] (What's this?)

  • [1] A. Benedek and R. Panzone, Continuity properties of the Hilbert transform, J. Functional Analysis 7 (1971), 217-234. MR 0276835 (43:2575)
  • [2] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587-588. MR 0280994 (43:6713)
  • [3] C. Fefferman and E. M. Stein, $ {H^p}$-spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [4] F. Forelli, The Marcel Riesz theorem on conjugate functions, Trans. Amer. Math. Soc. 106 (1963), 369-390. MR 26 #5340. MR 0147827 (26:5340)
  • [5] V. F. Gapoškin, A generalization of the theorem of M. Riesz on conjugate functions, Mat. Sb. 46 (88) (1958), 359-372. (Russian) MR 20 #6000. MR 0099561 (20:6000)
  • [6] G. H. Hardy and J. E. Littlewood, Some more theorems concerning Fourier series and Fourier power series, Duke Math. J. 2 (1936), 354-382. MR 1545928
  • [7] H. Helson and G. Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. (4) 51 (1960), 107-138. MR 22 #12343. MR 0121608 (22:12343)
  • [8] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. MR 24 #A1348. MR 0131498 (24:A1348)
  • [9] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [10] -, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242. MR 40 #3158. MR 0249917 (40:3158)
  • [11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 0290095 (44:7280)
  • [12] H. Widom, Singular integral equations in $ {L^p}$, Trans. Amer. Math. Soc. 97 (1960), 131-160. MR 22 #9830. MR 0119064 (22:9830)
  • [13] A. Zygmund, Trigonometrical series, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)
  • [14] M. Rosenblum, Summability of Fourier series in $ {L^p}(d)$, Trans. Amer. Math. Soc. 105 (1962), 32-42. MR 0160073 (28:3287)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A40, 44A15, 47G05

Retrieve articles in all journals with MSC: 42A40, 44A15, 47G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0312139-8
Keywords: Conjugate function, Hilbert transform, discrete Hilbert transform, weighted norm inequalities, bounded mean oscillation
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society