Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Monads of infinite points and finite product spaces


Author: Frank Wattenberg
Journal: Trans. Amer. Math. Soc. 176 (1973), 351-368
MSC: Primary 54D15; Secondary 02H25
DOI: https://doi.org/10.1090/S0002-9947-1973-0312463-9
MathSciNet review: 0312463
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of ``monad'' is generalized to infinite (i.e. non-near-standard) points in arbitrary nonstandard models of completely regular topological spaces. The behaviour of several such monad systems in finite product spaces is investigated and we prove that for paracompact spaces X such that $ X \times X$ is normal, the covering monad $ \mu $ satisfies $ \mu (x,y) = \mu (x) \times \mu (y)$ whenever x and y have the same ``order of magnitude.'' Finally, monad systems, in particular non-standard models of the real line, R, are studied and we show that in a minimal nonstandard model of R exactly one monad system exists and, in fact, $ \mu (x) = \{ x\} $ if x is infinite.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Bell and A. B. Slomson, Models and ultraproducts: an introduction, North-Holland, Amsterdam, 1969. MR 42 #4381. MR 0269486 (42:4381)
  • [2] A. Blass, Orderings of ultrafilters, Thesis, Harvard University, Cambridge, Mass., 1970.
  • [3] -, The Rudin-Keisler ordering of P-points (to appear).
  • [4] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970/71), no. 1, 1-24. MR 43 #3104. MR 0277371 (43:3104)
  • [5] G. Choquet, Construction d'ultrafiltres sur N, Bull. Sci. Math. (2) 92 (1968), 41-48. MR 38 #2722. MR 0234405 (38:2722)
  • [6] -, Deux classes remarquables d'ultrafiltres sur N, Bull. Sci. Math. (2) 92 (1968), 143-153. MR 38 #5154. MR 0236860 (38:5154)
  • [7] H. J. Keisler, Good ideals in fields of sets, Ann. of Math. (2) 79 (1964), 338-359. MR 29 #3383. MR 0166105 (29:3383)
  • [8] -, Ultraproducts and elementary classes, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 477-495. MR 25 #3816. MR 0140396 (25:3816)
  • [9] -, Ultraproducts and saturated models, Nederl. Akad. Wetensch. Proc. Ser. A 67 = Indag. Math. 26 (1964), 178-186. MR 29 #5745. MR 0168483 (29:5745)
  • [10] W. A. J. Luxemburg, A new approach to the theory of monads, California Institute of Technology, Pasadena, Calif., 1967.
  • [11] -(Editor), Applications of model theory to algebra, analysis, and probability, Holt, Rinehart and Winston, New York, 1969. MR 38 #3143. MR 0234829 (38:3143)
  • [12] M. Machover and J. Hirschfeld, Lectures on non-standard analysis, Lecture Notes in Math., vol. 94, Springer-Verlag, Berlin and New York, 1969. MR 40 #2531. MR 0249285 (40:2531)
  • [13] M. Morley and R. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), 37-57. MR 27 #37. MR 0150032 (27:37)
  • [14] A. Robinson, Non-standard analysis, North-Holland, Amsterdam, 1966. MR 34 #5680. MR 0205854 (34:5680)
  • [15] -, Nonstandard arithmetic, Bull. Amer. Math. Soc. 73 (1967), 818-843. MR 36 #1319. MR 0218231 (36:1319)
  • [16] M. E. Rudin, Types of ultrafilters, Topology Seminar (Wisconsin, 1965), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 147-151. MR 35 #7284. MR 0216451 (35:7284)
  • [17] W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409-419. MR 18, 324. MR 0080902 (18:324d)
  • [18] E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007. MR 0210112 (35:1007)
  • [19] F. Wattenberg, Nonstandard topology and extensions of monad systems to infinite points, J. Symbolic Logic 36 (1971), 463-476. MR 0293565 (45:2642)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54D15, 02H25

Retrieve articles in all journals with MSC: 54D15, 02H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0312463-9
Keywords: Nonstandard analysis, monad systems, minimal ultrafilters, P-points
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society