Hankel transforms and GASP
Author:
Stanton Philipp
Journal:
Trans. Amer. Math. Soc. 176 (1973), 5972
MSC:
Primary 44A15
MathSciNet review:
0316978
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The inversion of the classical Hankel transform is considered from three viewpoints. The first approach is direct, and a theorem is given which allows inversion in the (C, 1) sense under fairly weak hypotheses. The second approach is via Abel summability, and it is shown that inversion is possible if it is known that the Hankel transform is Abel summable and if certain critical growth conditions are satisfied. The third approach rests on the observation that Abel means of Hankel transforms satisfy a variant of the GASP equation in two arguments. In this setting the inversion problem becomes a boundary value problem for GASP in a quadrant of the plane with boundary values on one of the axes; a uniqueness theorem for this problem is proved which is best possible in several respects.
 [1]
Salomon
Bochner, Lectures on Fourier integrals. With an author’s
supplement on monotonic functions, Stieltjes integrals, and harmonic
analysis, Translated by Morris Tenenbaum and Harry Pollard. Annals of
Mathematics Studies, No. 42, Princeton University Press, Princeton, N.J.,
1959. MR
0107124 (21 #5851)
 [2]
G.
H. Hardy, Divergent Series, Oxford, at the Clarendon Press,
1949. MR
0030620 (11,25a)
 [3]
A. C. Offord, On the uniqueness of the representation of a function by a trigonometric integral, Proc. London Math. Soc. (2) 42 (1937), 422480.
 [4]
P. M. Owen, The Riemannian theory of Hankel transforms, Proc. London Math. Soc. (2) 39 (1935), 295320.
 [5]
Victor
L. Shapiro, The uniqueness of functions harmonic in the interior of
the unit disk, Proc. London Math. Soc. (3) 13 (1963),
639–652. MR 0155983
(27 #5916)
 [6]
Victor
L. Shapiro, The uniqueness of solutions of the
heat equation in an infinite strip, Trans.
Amer. Math. Soc. 125 (1966), 326–361. MR 0201847
(34 #1727), http://dx.doi.org/10.1090/S00029947196602018471
 [7]
E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937.
 [8]
G.
N. Watson, A treatise on the theory of Bessel functions,
Cambridge Mathematical Library, Cambridge University Press, Cambridge,
1995. Reprint of the second (1944) edition. MR 1349110
(96i:33010)
 [9]
E.
T. Whittaker and G.
N. Watson, A course of modern analysis, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1996. An introduction to
the general theory of infinite processes and of analytic functions; with an
account of the principal transcendental functions; Reprint of the fourth
(1927) edition. MR 1424469
(97k:01072)
 [10]
A.
Zygmund, On trigonometric integrals, Ann. of Math. (2)
48 (1947), 393–440. MR 0021612
(9,88b)
 [11]
, Trigonometrical series. Vol. 1, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.
 [1]
 S. Bochner, Vorlesungen über Fouriersche Integrale, Akademische Verlagsgesellschaft, Leipzig, 1932; English transl., Ann. of Math. Studies, no. 42, Princeton Univ. Press, Princeton, N. J., 1959. MR 21 #5851. MR 0107124 (21:5851)
 [2]
 G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949. MR 11, 25. MR 0030620 (11:25a)
 [3]
 A. C. Offord, On the uniqueness of the representation of a function by a trigonometric integral, Proc. London Math. Soc. (2) 42 (1937), 422480.
 [4]
 P. M. Owen, The Riemannian theory of Hankel transforms, Proc. London Math. Soc. (2) 39 (1935), 295320.
 [5]
 V. L. Shapiro, The uniqueness of functions harmonic in the interior of the unit disk, Proc. London Math. Soc. (3) 13 (1963), 639652. MR 27 #5916. MR 0155983 (27:5916)
 [6]
 , The uniqueness of solutions of the heat equation in an infinite strip, Trans. Amer. Math. Soc. 125 (1966), 326361. MR 34 #1727. MR 0201847 (34:1727)
 [7]
 E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937.
 [8]
 G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1922. MR 1349110 (96i:33010)
 [9]
 E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press, New York, 1927. MR 1424469 (97k:01072)
 [10]
 A. Zygmund, On trigonometric integrals, Ann. of Math. (2) 48 (1947), 393440. MR 9, 88. MR 0021612 (9:88b)
 [11]
 , Trigonometrical series. Vol. 1, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
44A15
Retrieve articles in all journals
with MSC:
44A15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197303169789
PII:
S 00029947(1973)03169789
Keywords:
Hankel transform,
GASP,
locally integrable,
kernel,
inversion,
smooth,
generalized second derivative,
Bessel function,
Legendre function of second kind,
hypergeometric function,
binomial coefficient
Article copyright:
© Copyright 1973
American Mathematical Society
