Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Oriented and weakly complex bordism algebra of free periodic maps


Author: Katsuyuki Shibata
Journal: Trans. Amer. Math. Soc. 177 (1973), 199-220
MSC: Primary 57D85
DOI: https://doi.org/10.1090/S0002-9947-1973-0315734-5
MathSciNet review: 0315734
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Free cyclic actions on a closed oriented (weakly almost complex, respectively) manifold which preserve the orientation (weakly complex structure) are considered from the viewpoint of equivariant bordism theory. The author gives an explicit presentation of the oriented bordism module structure and multiplicative structure of all orientation preserving (and reversing) free involutions. The odd period and weakly complex cases are also determined with the aid of the notion of formal group laws. These results are applied to a nonexistence problem for certain equivariant maps.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200-208. MR 23 #A4150. MR 0126856 (23:A4150)
  • [2] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750. MR 0176478 (31:750)
  • [3] -, Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc. 70 (1964), 574-579. MR 29 #1653. MR 0164356 (29:1653)
  • [4] -, The relation of cobordism to K-theories, Lecture Notes in Math., no. 28, Springer-Verlag, Berlin and New York, 1966. MR 35 #7344. MR 0216511 (35:7344)
  • [5] T. tom Dieck, Bordism of G-manifolds and integrality theorems, Topology 9 (1970), 345-358. MR 42 #1148. MR 0266241 (42:1148)
  • [6] C. H. Giffen, Weakly complex involutions and cobordism of projective spaces, Ann. of Math. (2) 90 (1969), 418-432. MR 40 #6561. MR 0253346 (40:6561)
  • [7] M. Kamata, The structure of the bordism group $ {U_\ast }(B{Z_p})$, Osaka J. Math. 7 (1970), 409-416. MR 43 #1203. MR 0275447 (43:1203)
  • [8] T. Kambe, The structure of $ {K_\Lambda }$-rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966), 135-146. MR 33 #6646. MR 0198491 (33:6646)
  • [9] K. Komiya, Oriented bordism and involutions, Osaka J. Math. 9 (1972), 165-182. MR 0307221 (46:6341)
  • [10] S. P. Novikov, Methods of algebraic topology from the viewpoint of cobordism theories, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855-951 = Math. USSR Izv. 1 (1967), 827-913. MR 36 #4561. MR 0221509 (36:4561)
  • [11] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1968. MR 40 #2108. MR 0248858 (40:2108)
  • [12] -, Bordism and involutions, Ann of Math. (2) 90 (1969), 47-74. MR 39 #3503. MR 0242170 (39:3503)
  • [13] J. C. Su, A Note on the bordism algebra of involutions, Michigan Math. J. 12 (1965), 25-31. MR 31 #4040. MR 0179798 (31:4040)
  • [14] F. Uchida, Bordism algebra of involutions, Proc. Japan Acad. 46 (1970), 615-619. MR 0287555 (44:4759)
  • [15] J. W. Vick, An application of K-theory to equivariant maps, Bull. Amer. Math. Soc. 75 (1969), 1017-1019. MR 39 #6336. MR 0245023 (39:6336)
  • [16] C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292-311. MR 22 #11403. MR 0120654 (22:11403)
  • [17] C.-M. Wu, Bordism and maps of odd prime period, Osaka J. Math. 8 (1971), 405-424. MR 0310862 (46:9960)
  • [18] T. Yoshida, On the K-theoretic characteristic numbers of weakly almost complex manifolds with involution (to appear). MR 0309126 (46:8237)
  • [19] G. G. Kasparov, Invariants of classical lens manifolds in cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 735-747 = Math. USSR Izv. 3 (1969), 695-705. MR 43 #1205. MR 0275449 (43:1205)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D85

Retrieve articles in all journals with MSC: 57D85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0315734-5
Keywords: Oriented bordism, weakly complex bordism, free periodic maps, equivariant bordism theory, free differentiable involutions, equivariant maps, Pontrjagin product, Smith homomorphism, cobordism characteristic classes, formal group law, logarithm of a formal group, Miščenko series
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society