Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Krull dimension in power series rings


Author: Jimmy T. Arnold
Journal: Trans. Amer. Math. Soc. 177 (1973), 299-304
MSC: Primary 13J05
DOI: https://doi.org/10.1090/S0002-9947-1973-0316451-8
MathSciNet review: 0316451
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let R denote a commutative ring with identity. If there exists a chain $ {P_0} \subset {P_1} \subset \cdots \subset {P_n}$ of $ n + 1$ prime ideals of R, where $ {P_n} \ne R$, but no such chain of $ n + 2$ prime ideals, then we say that R has dimension n. The power series ring $ R[[X]]$ may have infinite dimension even though R has finite dimension.


References [Enhancements On Off] (What's this?)

  • [1] J. T. Arnold and J. W. Brewer, When $ {(D[[X]])_{P[[X]]}}$ is a valuation ring, Proc. Amer. Math. Soc. 37 (1973), 326-332. MR 0311656 (47:218)
  • [2] D. E. Fields, Zero divisors and nilpotent elements in power series rings, Proc. Amer. Math. Soc. 27 (1971), 427-433. MR 42 #5983. MR 0271100 (42:5983)
  • [3] -, Dimension theory in power series rings, Pacific J. Math. 35 (1970), 601-611. MR 43 #3251. MR 0277518 (43:3251)
  • [4] R. Gilmer, Multiplicative ideal theory, Queen's Papers in Pure and Appl. Math., no. 12, Queen's University, Kingston, Ont., 1968. MR 37 #5198. MR 0229624 (37:5198)
  • [5] J. Ohm and R. Pendleton, Rings with Noetherian spectrum, Duke Math J. 35 (1968), 631-639. MR 37 #5201. MR 0229627 (37:5201)
  • [6] A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505-512. MR 14, 941. MR 0054571 (14:941c)
  • [7] -, On the dimension theory of rings. II, Pacific J. Math. 4 (1954), 603-614. MR 16, 441. MR 0065540 (16:441g)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13J05

Retrieve articles in all journals with MSC: 13J05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0316451-8
Keywords: Dimension, power series ring
Article copyright: © Copyright 1973 American Mathematical Society

American Mathematical Society