Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Exit properties of stochastic processes with stationary independent increments


Author: P. W. Millar
Journal: Trans. Amer. Math. Soc. 178 (1973), 459-479
MSC: Primary 60J30
MathSciNet review: 0321198
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \{ {X_t},t \geq 0\} $ be a real stochastic process with stationary independent increments. For $ x > 0$, define the exit time $ {T_x}$ from the interval $ ( - \infty ,x]$ by $ {T_x} = \inf \{ t > 0:{X_t} > x\} $. A reasonably complete solution is given to the problem of deciding precisely when $ {P^0}\{ {X_{{T_x}}} = x\} > 0$ and precisely when $ {P^0}\{ {X_{{T_x}}} = x\} = 0$. The solution is given in terms of parameters appearing in the Lévy formula for the characteristic function of $ {X_t}$. A few applications of this result are discussed.


References [Enhancements On Off] (What's this?)

  • [1] R. M. Blumenthal and R. K. Getoor, Sample functions of stochastic processes with stationary independent increments, J. Math. Mech. 10 (1961), 493–516. MR 0123362
  • [2] R. M. Blumenthal and R. K. Getoor, Local times for Markov processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 50–74. MR 0165569
  • [3] R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
  • [4] Salomon Bochner, Harmonic analysis and the theory of probability, University of California Press, Berkeley and Los Angeles, 1955. MR 0072370
  • [5] Leo Breiman, Probability, Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, Ont., 1968. MR 0229267
  • [6] Jean Bretagnolle, Résultats de Kesten sur les processus à accroissements indépendants, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969-1970), Springer, Berlin, 1971, pp. 21–36. Lecture Notes in Math., Vol. 191 (French). MR 0368175
  • [7] Kai Lai Chung, A course in probability theory, Harcourt, Brace & World, Inc., New York, 1968. MR 0229268
  • [8] B. E. Fristedt, Forthcoming monograph, Chap. 9.
  • [9] R. K. Getoor and H. Kesten, Continuity of local times for Markov processes, Compositio Math. 24 (1972), 277–303. MR 0310977
  • [10] Nobuyuki Ikeda and Shinzo Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J. Math. Kyoto Univ. 2 (1962), 79–95. MR 0142153
  • [11] Harry Kesten, Hitting probabilities of single points for processes with stationary independent increments, Memoirs of the American Mathematical Society, No. 93, American Mathematical Society, Providence, R.I., 1969. MR 0272059
  • [12] -, Continuity of local times for Markov processes, Preliminary manuscript whose final version was [9].
  • [13] John Lamperti, An invariance principle in renewal theory, Ann. Math. Statist. 33 (1962), 685–696. MR 0137176
  • [14] P.-A. Meyer, Intégrales stochastiques. I, II, III, IV, Séminaire de Probabilités (Univ. Strasbourg, Strasbourg, 1966/67) Springer, Berlin, 1967, pp. 72–94, 95–117, 118–141, 142–162 (French). MR 0231445
  • [15] P. A. Meyer, Un théorème sur la répartition des temps locaux, Séminaire de Probabilités, V (Univ. Strasbourg, année universitaire 1969–1970), Springer, Berlin, 1971, pp. 209–210. Lecture Notes in Math., Vol. 191. MR 0400419
  • [16] Paul-André Meyer, Processus de Markov, Lecture Notes in Mathematics, No. 26, Springer-Verlag, Berlin-New York, 1967 (French). MR 0219136
  • [17] P. W. Millar, Path behavior of processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 53–73. MR 0324781
  • [18] P. Warwick Millar, Stochastic integrals and processes with stationary independent increments, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 307–331. MR 0402922
  • [19] B. A. Rogozin, Distribution of certain functionals related to boundary value problems for processes with independent increments, Teor. Verojatnost. i Primenen. 11 (1966), 656–670 (Russian, with English summary). MR 0208682
  • [20] B. A. Rogozin, The local behavior of processes with independent increments, Teor. Verojatnost. i Primenen. 13 (1968), 507–512 (Russian, with English summary). MR 0242261
  • [21] E. S. Štatland, On local properties of processes with independent increments, Teor. Verojatnost. i Primenen. 10 (1965), 344–350 (Russian, with English summary). MR 0183022
  • [22] Shinzo Watanabe, On stable processes with boundary conditions, J. Math. Soc. Japan 14 (1962), 170–198. MR 0144387
  • [23] Shinzo Watanabe, On discontinuous additive functionals and Lévy measures of a Markov process, Japan. J. Math. 34 (1964), 53–70. MR 0185675

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J30

Retrieve articles in all journals with MSC: 60J30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1973-0321198-8
Keywords: Stochastic process, Markov process, stationary independent increments, sample function behavior, local time, Lévy measure, first passage time, first passage distribution, subordinator
Article copyright: © Copyright 1973 American Mathematical Society